Williams (WS) and Down (DS) syndromes are neurodevelopmental disorders with distinct genetic origins and different spatial memory profiles. In real-world spatial memory tasks, where spatial information derived from all sensory modalities is available, individuals with DS demonstrate low-resolution spatial learning capacities consistent with their mental age, whereas individuals with WS are severely impaired. However, because WS is associated with severe visuo-constructive processing deficits, it is unclear whether their impairment is due to abnormal visual processing or whether it reflects an inability to build a cognitive map. Here, we tested whether blindfolded individuals with WS or DS, and typically developing (TD) children with similar mental ages, could use path integration to perform an egocentric homing task and return to a starting point. We then evaluated whether they could take shortcuts and navigate along never-traveled trajectories between four objects while blindfolded, thus demonstrating the ability to build a cognitive map. In the homing task, 96% of TD children, 84% of participants with DS and 44% of participants with WS were able to use path integration to return to their starting point consistently. In the cognitive mapping task, 64% of TD children and 74% of participants with DS were able to take shortcuts and use never-traveled trajectories, the hallmark of cognitive mapping ability. In contrast, only one of eighteen participants with WS demonstrated the ability to build a cognitive map. These findings are consistent with the view that hippocampus-dependent spatial learning is severely impacted in WS, whereas it is relatively preserved in DS.
Event-based prospective memory (PM) was investigated in children with Attention deficit/hyperactivity disorder (ADHD), using a novel experimental procedure to evaluate the role of working memory (WM) load, attentional focus, and reward sensitivity. The study included 24 children with ADHD and 23 typically-developing controls. The experimental paradigm comprised one baseline condition (BC), only including an ongoing task, and four PM conditions, varying for targets: 1 Target (1T), 4 Targets (4T), Unfocal (UN), and Reward (RE). Children with ADHD were slower than controls on all PM tasks and less accurate on both ongoing and PM tasks on the 4T and UN conditions. Within the ADHD group, the accuracy in the RE condition did not differ from BC. A significant relationship between ADHD-related symptoms and reduced accuracy/higher speed in PM conditions (PM and ongoing trials), but not in BC, was detected. Our data provide insight on the adverse role of WM load and attentional focus and the positive influence of reward in the PM performance of children with ADHD. Moreover, the relation between PM and ADHD symptoms paves the road for PM as a promising neuropsychological marker for ADHD diagnosis and intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.