The study describes the finding of an abnormal blue-tinged color found on rabbit carcasses in the refrigeration cell of two butcher shops in Apulia Region. The carcasses were from an industrial rabbitry for production of meat with a regularly authorized slaughterhouse. Pseudomonas azotoformans, a microorganism included in Pseudomonas fluorescens group, was isolated from samples collected by the altered carcasses, showing the growth of uniform bacterial colonies with fluorescent pigmentation. The bacterium was also isolated from an additional water sample and from the labelling gun collected in the slaughterhouse, whilst the knives used for slaughtering resulted negative. Chromatic alteration was experimentally reproduced on new carcasses using a 108 cfu/mL bacterial suspension prepared with the isolated strain. Due to their resistance characteristics, members of P. fluorescens group are very difficult to eradicate once introduced into the production environment. Therefore, their presence, even if not considered a public health problem, should be monitored by food industry operators in self-control plans.
The possibility that Dermanyssus gallinae, the poultry red mite, could act as a vector of infectious disease-causing pathogens has always intrigued researchers and worried commercial chicken farmers, as has its ubiquitous distribution. For decades, studies have been carried out which suggest that there is an association between a wide range of pathogens and D. gallinae, with the transmission of some of these pathogens mediated by D. gallinae as vector. The latter include the avian pathogenic Escherichia coli (APEC), Salmonella enterica serovars Enteritidis and Gallinarum and influenza virus. Several approaches have been adopted to investigate the relationship between D. gallinae and pathogens. In this comprehensive review, we critically describe available strategies and methods currently available for conducting trials, as well as outcomes, analyzing their possible strengths and weaknesses, with the aim to provide researchers with useful tools for correctly approach the study of the vectorial role of D. gallinae.
Graphical Abstract
Bacteria belonging to the genus Pseudomonas are ubiquitous and characterized by a high adaptation capability to different environmental conditions and wide range of temperatures. They may colonize food, sometimes causing alteration. Quite recently, a blue pigmentation due to Pseudomonas fluorescens has been widely reported in mozzarella cheese. In this report, we describe a blue coloration occurred on rabbit meat stored in the refrigeration cell of a slaughterhouse. The alteration was observed after about 72 hours of storage at 4-6°C. Bacteriological analyses were performed, and a microorganism included in the Pseudomonas fluorescens group was identified. The experimental contamination was planned, using a bacterial suspension with 1x108 UFC/ml load to spread on rabbit carcasses. The blue pigmentation appeared after 24 hours of storage in a cell with the same conditions of temperature. The bacterium was reisolated and identified as responsible for the alteration on meat. These findings highlight the importance of considering the members of the genus Pseudomonas and, more specifically, of the P. fluorescens group when the microbiological quality of food is to be ascertained. In fact, even if these bacteria are not considered a public health problem, their presence should be monitored by food industry operators in self-control plans because they may cause alteration in food. In fact, any altered product should be withdrawn from the market in agreement with Regulation (EC) No 178/2002 of the European Parliament and of the Council.
Long-read sequencing (LRS), like Oxford Nanopore Technologies, is usually associated with higher error rates compared to previous generations. Factors affecting the assembly quality are the integrity of DNA, the flowcell efficiency, and, not least all, the raw data processing. Among LRS-intended de novo assemblers, Canu is highly flexible, with its dozens of adjustable parameters. Different Canu parameters were compared for assembling reads of Salmonellaenterica ser. Bovismorbificans (genome size of 4.8 Mbp) from three runs on MinION (N50 651, 805, and 5573). Two of them, with low quality and highly fragmented DNA, were not usable alone for assembly, while they were successfully assembled when combining the reads from all experiments. The best results were obtained by modifying Canu parameters related to the error correction, such as corErrorRate (exclusion of overlaps above a set error rate, set up at 0.40), corMhapSensitivity (the coarse sensitivity level, set to “high”), corMinCoverage (set to 0 to correct all reads, regardless the overlaps length), and corOutCoverage (corrects the longest reads up to the imposed coverage, set to 100). This setting produced two contigs corresponding to the complete sequences of the chromosome and a plasmid. The overall results highlight the importance of a tailored bioinformatic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.