Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required.
The Karakoram Range is one of the most glacierized mountain regions in the world, and glaciers there are an important water resource for Pakistan. The attention paid to this area is increasing because its glaciers remained rather stable in the early twenty-first century, in contrast to the general glacier retreat observed worldwide on average. This condition is also known as “Karakoram Anomaly”. Here we focus on the recent evolution of glaciers within the Central Karakoram National Park (CKNP, area: *13,000 km2) to assess their status in this region with respect to the described anomaly. A glacier inventory was produced for the years 2001 and 2010, using Landsat images. In total, 711 ice-bodies were detected and digitized, covering an area of 4605.9 ± 86.1 km2 in 2001 and 4606.3 ± 183.7 km2 in 2010, with abundant supraglacial debris cover. The difference between the area values of 2001 and 2010 is not significant (+0.4 ± 202.9 km2), confirming the anomalous behavior of glaciers in this region. The causes of such an anomaly may be various. The increase of snow cover areas from 2001 to 2011 detected using MODIS snow data; the reduction of mean summer temperatures; and the augmented snowfall events during 1980–2009 observed at meteorological stations and confirmed by the available literature, are climatic factors associated with positive mass balances. Because the response of glacier area change to climate variation is very slow for large glaciers, the presence of some of the largest glaciers of the Karakoram Range in this region might have delayed observed effects of such climate change so far, or alternatively, the change may not be sufficient to drive an actual area increase. In this context, improved understanding the role of debris cover, meltwater ponds, and exposed ice cliffs on debris-covered glaciers, and surging glaciers (which are also found abundant here), are required is still an issue to clarify the mechanisms behind the Karakoram Anomaly.
Abstract. In spite of the quite abundant literature focusing on fine debris deposition over glacier accumulation areas, less attention has been paid to the glacier melting surface. Accordingly, we proposed a novel method based on semiautomatic image analysis to estimate ice albedo from fine debris coverage (d). Our procedure was tested on the surface of a wide Alpine valley glacier (the Forni Glacier, Italy), in summer 2011, 2012 and 2013, acquiring parallel data sets of in situ measurements of ice albedo and high-resolution surface images. Analysis of 51 images yielded d values ranging from 0.01 to 0.63 and albedo was found to vary from 0.06 to 0.32. The estimated d values are in a linear relation with the natural logarithm of measured ice albedo (R = −0.84). The robustness of our approach in evaluating d was analyzed through five sensitivity tests, and we found that it is largely replicable. On the Forni Glacier, we also quantified a mean debris coverage rate (C r ) equal to 6 g m −2 per day during the ablation season of 2013, thus supporting previous studies that describe ongoing darkening phenomena at Alpine debris-free glaciers surface. In addition to debris coverage, we also considered the impact of water (both from melt and rainfall) as a factor that tunes albedo: meltwater occurs during the central hours of the day, decreasing the albedo due to its lower reflectivity; instead, rainfall causes a subsequent mean daily albedo increase slightly higher than 20 %, although it is short-lasting (from 1 to 4 days).
Abstract. Karakoram is one of the most glacierized region worldwide, and glaciers therein are the main water resource of Pakistan. The attention paid to this area is increasing, because the evolution of its glaciers recently depicted a situation of general stability, known as "Karakoram Anomaly", in contrast to glacier retreat worldwide. Here we focused our attention upon the glacier evolution within the Central Karakoram National Park (CKNP, a newborn park of this region, ca. 12 162 km2 in area) to assess the magnitude and rate of such anomaly. By means of Remote Sensing data (i.e.: Landsat images), we analyzed a sample of more than 700 glaciers, and we found out their area change between 2001 and 2010 is not significant (+27 km2 ± 42 km2), thus confirming their stationarity. We analyzed climate data, snow coverage from MODIS, and supraglacial debris presence, as well as potential (con-) causes. We found a slight decrease of summer temperatures (down to −1.5 °C during 1980–2009) and an increase of wet days during winter (up +3.3 days yr−1 during 1980–2009), possibly increasing snow cover duration, consistently with MODIS data. We further detected considerable supra-glacial debris coverage (ca. 20% of the glacier area which rose up to 31% considering only the ablation area), which could have reduced buried ice melting during the last decade. These results provide further ground to uphold the existence of the Karakoram Anomaly, and present an useful template for assessment of water availability within the glaciers of the CKNP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.