Conditions perturbing the homeostasis of the endoplasmic reticulum (ER) cause accumulation of unfolded proteins and trigger ER stress. In PC Cl3 thyroid cells, thapsigargin and tunicamycin interfered with the folding of thyroglobulin, causing accumulation of this very large secretory glycoprotein in the ER. Consequently, mRNAs encoding BiP and XBP-1 were induced and spliced, respectively. In the absence of apoptosis, differentiation of PC Cl3 cells was inhibited. mRNA and protein levels of the thyroid-specific genes encoding thyroglobulin, thyroperoxidase and the sodium/iodide symporter and of the genes encoding the thyroid transcription factors TTF-1, TTF-2 and Pax-8 were dramatically downregulated. These effects were, at least in part, transcriptional. Moreover, they were selective and temporally distinct from the general and transient PERK-dependent translational inhibition. Thyroid dedifferentiation was accompanied by changes in the organization of the polarized epithelial monolayer. Downregulation of the mRNA encoding E-cadherin, and upregulation of the mRNAs encoding vimentin, α-smooth muscle actin, α(1)(I) collagen and SNAI1/SIP1, together with formation of actin stress fibers and loss of trans-epithelial resistance were found, confirming an epithelial-mesenchymal transition (EMT). The thyroid-specific and epithelial dedifferentiation by thapsigargin or tunicamycin were completely prevented by the PP2 inhibitor of Src-family kinases and by stable expression of a dominant-negative Src. Together, these data indicate that ER stress induces dedifferentiation and an EMT-like phenotype in thyroid cells through a Src-mediated signaling pathway.
We present the first identification of transient folding intermediates of endogenous thyroglobulin (Tg; a large homodimeric secretory glycoprotein of thyrocytes), which include mixed disulfides with endogenous oxidoreductases servicing Tg folding needs. Formation of disulfide-linked Tg adducts with endoplasmic reticulum (ER) oxidoreductases begins cotranslationally. Inhibition of ER glucosidase activity blocked formation of a subgroup of Tg adducts containing ERp57 while causing increased Tg adduct formation with protein disulfide isomerase (PDI), delayed adduct resolution, perturbed oxidative folding of Tg monomers, impaired Tg dimerization, increased Tg association with BiP/GRP78 and GRP94, activation of the unfolded protein response, increased ER-associated degradation of a subpopulation of Tg, partial Tg escape from ER quality control with increased secretion of free monomers, and decreased overall Tg secretion. These data point towards mixed disulfides with the ERp57 oxidoreductase in conjunction with calreticulin/calnexin chaperones acting as normal early Tg folding intermediates that can be "substituted" by PDI adducts only at the expense of lower folding efficiency with resultant ER stress.Membrane and secretory proteins are cotranslationally translocated in the lumen of the endoplasmic reticulum (ER), where they acquire their three-dimensional structure (including the formation and isomerization of disulfide bonds), typically culminating in oligomeric assembly. This is a complex task, both facilitated and monitored by ER folding enzymes and molecular chaperones. Glycoproteins are an important subset of exportable proteins, and those bearing Asn-linked oligosaccharides fold preferentially with the aid of calreticulin (CRT) and calnexin (CNX), both of which possess a lectin-like binding site that prefers association with monoglucosylated oligosaccharide processing intermediates (4). CRT and CNX might directly influence protein folding (32), but an additional critical function of these proteins is to bring newly synthesized exportable glycoproteins in close proximity with ERp57 (47), an oxidoreductase that works in a complex with CRT/CNX and promotes proper disulfide bond formation (21,46,54).Another molecular chaperone is BiP (GRP78), which binds to unfolded polypeptides, helps to prevent protein aggregation through noncovalent associations regulated by its ATPase domain (9), and works cooperatively with protein disulfide isomerase (PDI) to promote oxidative protein folding (36). Indeed, recently the concept of two distinct chaperone-oxidoreductase complexes, one comprising CRT/CNX/ERp57 and the other including BiP/PDI (37), has emerged. This fits well with earlier proposals of a reticular-like matrix in the ER lumen in which different chaperone systems are organized (25,51). In this view, PDI plays a role in the BiP system analogous to that of ERp57 in the CRT/CNX system. However, while the absence of the CRT contribution to the ERp57 system can be functionally compensated for by the presence of CNX, the...
Aims/hypothesis Beta cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (decline of glucose-stimulated insulin secretion, downregulation of specific gene expression). Apoptosis and dysfunction are caused, at least in part, by lipoglucotoxicity. The mechanisms implicated are oxidative stress, increase in the hexosamine biosynthetic pathway (HBP) flux and endoplasmic reticulum (ER) stress. Oxidative stress plays a role in glucotoxicity-induced beta cell dedifferentiation, while glucotoxicity-induced ER stress has been mostly linked to beta cell apoptosis. We sought to clarify whether ER stress caused by increased HBP flux participates in a dedifferentiating response of beta cells, in the absence of relevant apoptosis. Methods We used INS-1E cells and murine islets. We analysed the unfolded protein response and the expression profile of beta cells by real-time RT-PCR and western blot. The signal transmission pathway elicited by ER stress was investigated by real-time RT-PCR and immunofluorescence. Results Glucosamine and high glucose induced ER stress, but did not decrease cell viability in INS-1E cells. ER stress caused dedifferentiation of beta cells, as shown by downregulation of beta cell markers and of the transcription factor, pancreatic and duodenal homeobox 1. Glucose-stimulated insulin secretion was inhibited. These effects were prevented by the chemical chaperone, 4-phenyl butyric acid. The extracellular signal-regulated kinase (ERK) signal transmission pathway was implicated, since its inhibition prevented the effects induced by glucosamine and high glucose. Conclusions/interpretation Glucotoxic ER stress dedifferentiates beta cells, in the absence of apoptosis, through a transcriptional response. These effects are mediated by the activation of ERK1/2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.