SummaryTransgenic murine lines have been constructed that express a chimeric class I molecule composed of the cx1 and u2 domains of HLAA2.1 and the 0, transmembrane, and cytoplasmic domains of H-2Kb. Upon immunization with influenza virus, transgenic mice developed a strong A2.1Kb-restricted cytotoxic T lymphocyte (CTL) response specific for the same matrix protein epitope that serves as the dominant A2.1-restricted determinant in the equivalent human response. Fine specificity analysis of CTL clones using truncated peptides revealed strong similarity between the response repertoire of transgenic mice and that previously reported using influenza-specific A2.1-restricted CTL clones from humans. This suggests that even when considering T cell responses by different species, the a1 and ot2 domains of the restriction element play a dominant role in determining the CTL specific repertoire. Thus, substituting the a3 domain of A2.1 with a murine counterpart has permitted development of a transgenic strain that should serve as an excellent model system in studies of HLArestricted responses .
Cathelicidins (caths) are peptides that are expressed at high levels in neutrophils and some epithelia and can act as natural antibiotics by directly killing a wide range of microorganisms. We hypothesized that caths are expressed in mast cells (MCs), because these cells have been previously associated with inherent antimicrobial activity. Cultured murine MCs contained abundant amounts of cathelin-related antimicrobial peptide (AMP), the murine cath, and this expression was inducible by LPS or lipoteichoic acid. Human skin MCs also expressed cath as detected by immunohistochemical analysis for the human cath LL-37. The functional significance of this expression was shown by comparing MCs cultured from normal mice to MCs from littermates deficient in the cathelin-related AMP gene (Cnlp−). MCs derived from Cnlp−/− animals had a 50% reduction in their ability to kill group A Streptococcus. These MCs expressed equivalent amounts of mRNA for murine β-defensin-4, a β-defensin AMP. Thus, different antimicrobials can be identified in MCs, and the presence of cath is necessary for efficient bacterial killing. These observations suggest that the presence of cath is vital to the ability of mammalian MCs to participate in antimicrobial defense.
Our goal is to use peptide epitopes that are recognized by cytotoxic T lymphocytes (CTL) carried out in 26 normal subjects showed that the vaccine was safe and able to induce a primary HBV-specific CTL response. A dose-response curve was observed and five out of five subjects responded to the 500-jig dose. (J. Clin. Invest. 1995. 95:341-349.)
In vitro PA28 binds and activates proteasomes. It is shown here that mice with a disrupted PA28b gene lack PA28a and PA28b polypeptides, demonstrating that PA28 functions as a hetero-oligomer in vivo. Processing of antigenic epitopes derived from exogenous or endogenous antigens is altered in PA28-/- mice. Cytotoxic T lymphocyte responses are impaired, and assembly of immunoproteasomes is greatly inhibited in mice lacking PA28. These results show that PA28 is necessary for immunoproteasome assembly and is required for efficient antigen processing, thus demonstrating the importance of PA28-mediated proteasome function in immune responses.
Efficient transport of class I major histocompatibility complex molecules to the cell surface requires association of the class I heavy chain with endogenous peptide and the class I light chain, beta 2-microglobulin (beta 2M). A mutant cell line deficient in beta 2M transports low amounts of nonpeptide-associated heavy chains to the cell surface that can associate with exogenously provided beta 2M and synthetic peptide antigens. Normal beta 2M-sufficient cells grown in serum-free media devoid of beta 2M also require an exogenous source of beta 2M to efficiently bind synthetic peptide. Thus, class I molecules on normal cells do not spontaneously bind or exchange peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.