No abstract
Malignant gliomas are the most common primary brain tumors in adults up to an extent of 78% of all primary malignant brain tumors. However, total surgical resection is almost unachievable due to the considerable infiltrative ability of glial cells. The efficacy of current multimodal therapeutic strategies is, furthermore, limited by the lack of specific therapies against malignant cells, and, therefore, the prognosis of these in patients is still very unfavorable. The limitations of conventional therapies, which may result from inefficient delivery of the therapeutic or contrast agent to brain tumors, are major reasons for this unsolved clinical problem. The major problem in brain drug delivery is the presence of the blood–brain barrier, which limits the delivery of many chemotherapeutic agents. Nanoparticles, thanks to their chemical configuration, are able to go through the blood–brain barrier carrying drugs or genes targeted against gliomas. Carbon nanomaterials show distinct properties including electronic properties, a penetrating capability on the cell membrane, high drug-loading and pH-dependent therapeutic unloading capacities, thermal properties, a large surface area, and easy modification with molecules, which render them as suitable candidates for deliver drugs. In this review, we will focus on the potential effectiveness of the use of carbon nanomaterials in the treatment of malignant gliomas and discuss the current progress of in vitro and in vivo researches of carbon nanomaterials-based drug delivery to brain.
IntroductionThe goal of brain tumor surgery is the maximal resection of neoplastic tissue, while preserving the adjacent functional brain tissues. The identification of functional networks involved in complex brain functions, including visuospatial abilities (VSAs), is usually difficult. We report our preliminary experience using a preoperative planning based on the combination of navigated transcranial magnetic stimulation (nTMS) and DTI tractography to provide the preoperative 3D reconstruction of the visuospatial (VS) cortico-subcortical network in patients with right parietal lobe tumors.Material and MethodsPatients affected by right parietal lobe tumors underwent mapping of both hemispheres using an nTMS-implemented version of the Hooper Visual Organization Test (HVOT) to identify cortical areas involved in the VS network. DTI tractography was used to compute the subcortical component of the network, consisting of the three branches of the superior longitudinal fasciculus (SLF). The 3D reconstruction of the VS network was used to plan and guide the safest surgical approach to resect the tumor and avoid damage to the network. We retrospectively analyzed the cortical distribution of nTMS-induced errors, and assessed the impact of the planning on surgery by analyzing the extent of tumor resection (EOR) and the occurrence of postoperative VSAs deficits in comparison with a matched historical control group of patients operated without using the nTMS-based preoperative reconstruction of the VS network.ResultsTwenty patients were enrolled in the study (Group A). The error rate (ER) induced by nTMS was higher in the right vs. the left hemisphere (p=0.02). In the right hemisphere, the ER was higher in the anterior supramarginal gyrus (aSMG) (1.7%), angular gyrus (1.4%) superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital gyrus (dLoG) (1.2%). The reconstruction of the cortico-subcortical VS network was successfully used to plan and guide tumor resection. A gross total resection (GTR) was achieved in 85% of cases. After surgery no new VSAs deficits were observed and a slightly significant improvement of the HVOT score (p=0.02) was documented. The historical control group (Group B) included 20 patients matched for main clinical characteristics with patients in Group A, operated without the support of the nTMS-based planning. A GTR was achieved in 90% of cases, but the postoperative HVOT score resulted to be worsened as compared to the preoperative period (p=0.03). The comparison between groups showed a significantly improved postoperative HVOT score in Group A vs. Group B (p=0.03).ConclusionsThe nTMS-implemented HVOT is a feasible approach to map cortical areas involved in VSAs. It can be combined with DTI tractography, thus providing a reconstruction of the VS network that could guide neurosurgeons to preserve the VS network during tumor resection, thus reducing the occurrence of postoperative VSAs deficits as compared to standard asleep surgery.
Dural metastases are rare intracranial tumors. They are not sufficiently studied and there are still no specific methods are not to detect them. Differential diagnosis is difficult and only the histologic examination allows a sure diagnosis. We reviewed data records from 2016 to 2020 of patients treated for dural metastases. We included only patients with complete anamnestic history, with both known and unknown primitive cancer. Collected data were compared with recent literature. We operated on 16 single dural metastases, also from very unusual cancers. The most common primitive type of cancer, in our series, was lung tumor, in contrast to prostate cancer, recently reported in literature as the most frequent. A retrospective multicenter study is mandatory to assess new epidemiologic evidences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.