Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO2 fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.Bacteroidetes ͉ marine bacteria ͉ whole-genome analysis ͉ heterotrophic CO2 fixation
The rate of information collection generated by metagenomics is uncoupled with its meaningful ecological interpretation. New analytical approaches based on functional trait-based ecology may help to bridge this gap and extend the trait approach to the community level in vast and complex environmental genetic data sets. Here, we explored a set of community traits that range from nucleotidic to genomic properties in 53 metagenomic aquatic samples from the Global Ocean Sampling (GOS) expedition. We found significant differences between the community profile derived from the commonly used 16S rRNA gene and from the functional trait set. The traits proved to be valuable ecological markers by discriminating between marine ecosystems (coastal vs. open ocean) and between oceans (Atlantic vs. Indian vs. Pacific). Intertrait relationships were also assessed, and we propose some that could be further used as habitat descriptors or indicators of artefacts during sample processing. Overall, the approach presented here may help to interpret metagenomics data to gain a full understanding of microbial community patterns in a rigorous ecological framework.
Proteorhodopsin phototrophy is expected to have considerable impact on the ecology and biogeochemical roles of marine bacteria. However, the genetic features contributing to the success of proteorhodopsincontaining bacteria remain largely unknown. We investigated the genome of Dokdonia sp. strain MED134 (Bacteroidetes) for features potentially explaining its ability to grow better in light than darkness. MED134 has a relatively high number of peptidases, suggesting that amino acids are the main carbon and nitrogen sources. In addition, MED134 shares with other environmental genomes a reduction in gene copies at the expense of important ones, like membrane transporters, which might be compensated by the presence of the proteorhodopsin gene. The genome analyses suggest Dokdonia sp. MED134 is able to respond to light at least partly due to the presence of a strong flavobacterial consensus promoter sequence for the proteorhodopsin gene. Moreover, Dokdonia sp. MED134 has a complete set of anaplerotic enzymes likely to play a role in the adaptation of the carbon anabolism to the different sources of energy it can use, including light or various organic matter compounds. In addition to promoting growth, proteorhodopsin phototrophy could provide energy for the degradation of complex or recalcitrant organic matter, survival during periods of low nutrients, or uptake of amino acids and peptides at low concentrations. Our analysis suggests that the ability to harness light potentially makes MED134 less dependent on the amount and quality of organic matter or other nutrients. The genomic features reported here may well be among the keys to a successful photoheterotrophic lifestyle.
Despite its widespread distribution and high levels of phylogenetic diversity, microbes are poorly understood creatures. We applied a phylogenetic ecology approach in the Kingdom Euryarchaeota (Archaea) to gain insight into the environmental distribution and evolutionary history of one of the most ubiquitous and largely unknown microbial groups. We compiled 16S rRNA gene sequences from our own sequence libraries and public genetic databases for two of the most widespread mesophilic Euryarchaeota clades, Lake Dagow Sediment (LDS) and Rice Cluster-V (RC-V). The inferred population history indicated that both groups have undergone specific nonrandom evolution within environments, with several noteworthy habitat transition events. Remarkably, the LDS and RC-V groups had enormous levels of genetic diversity when compared with other microbial groups, and proliferation of sequences within each single clade was accompanied by significant ecological differentiation. Additionally, the freshwater Euryarchaeota counterparts unexpectedly showed high phylogenetic diversity, possibly promoted by their environmental adaptability and the heterogeneous nature of freshwater ecosystems. The temporal phylogenetic diversification pattern of these freshwater Euryarchaeota was concentrated both in early times and recently, similarly to other much less diverse but deeply sampled archaeal groups, further stressing that their genetic diversity is a function of environment plasticity. For the vast majority of living beings on Earth (i.e. the uncultured microorganisms), how they differ in the genetic or physiological traits used to exploit the environmental resources is largely unknown. Inferring population history from 16S rRNA gene-based molecular phylogenies under an ecological perspective may shed light on the intriguing relationships between lineage, environment, evolution and diversity in the microbial world.
Microorganisms mediating ammonia oxidation play a fundamental role in the connection between biological nitrogen fixation and anaerobic nitrogen losses. Bacteria and Archaea ammonia oxidizers (AOB and AOA, respectively) have colonized similar habitats worldwide. Ammonia oxidation is the rate-limiting step in nitrification, and the ammonia monooxygenase (Amo) is the key enzyme involved. The molecular ecology of this process has been extensively explored by surveying the gene of the subunit A of the Amo (amoA gene). In the present study, we explored the phylogenetic community ecology of AOB and AOA, analyzing 5776 amoA gene sequences from >300 isolation sources, and clustering habitats by environmental ontologies. As a whole, phylogenetic richness was larger in AOA than in AOB, and sediments contained the highest phylogenetic richness whereas marine plankton the lowest. We also observed that freshwater ammonia oxidizers were phylogenetically richer than their marine counterparts. AOA communities were more dissimilar to each other than those of AOB, and consistent monophyletic lineages were observed for sediments, soils, and marine plankton in AOA but not in AOB. The diversification patterns showed a more constant cladogenesis through time for AOB whereas AOA apparently experienced two fast diversification events separated by a long steady-state episode. The diversification rate (γ statistic) for most of the habitats indicated γAOA > γAOB. Soil and sediment experienced earlier bursts of diversification whereas habitats usually eutrophic and rich in ammonium such as wastewater and sludge showed accelerated diversification rates towards the present. Overall, this work shows for the first time a global picture of the phylogenetic community structure of both AOB and AOA assemblages following the strictest analytical standards, and provides an ecological view on the differential evolutionary paths experienced by widespread ammonia-oxidizing microorganisms. The emerged picture of AOB and AOA distribution in different habitats provides a new view to understand the ecophysiology of ammonia oxidizers on Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.