The large tendency of catechol rings to adsorb on surfaces has been studied by STM experiments with molecular resolution combined with molecular-dynamics simulations. The strong adhesion is due to interactions with the surface and solvent effects. Moreover, the thermodynamic control over the differential adsorption of 1 and the nonanoic solvent molecules has been used to induce a new temperature-induced switchable interconversion. Two different phases that differ in their crystal packing and the presence of solvent molecules coexist upon an increase or decrease in the temperature. These results open new insight into the behavior of catechol molecules on surfaces and 2D molecular suprastructures.
This paper describes the stereoselective synthesis of a series of functionalized cyclobutane and cyclobutene L‐nucleoside analogues featuring a methylene spacer between the carbocycle and the nucleobase. These L‐nucleoside analogues were subjected to comprehensive screening for antiviral activity. To obtain knowledge at the molecular structural level relevant for designing future analogues, the mechanism of action of these L‐nucleoside analogues as anti‐herpes simplex virus agents was investigated by computational approaches. In particular, protein–ligand docking calculations were used to rationalize the ability of the prodrug candidates to be activated. Docking experiments were performed on the three kinases involved in the activation process of thymine and guanine derivatives.
The present work describes some recent approaches to novel 3-oxabicyclo[3.2.0]heptane-type nucleosides structurally similar to the potent anti-HIV agent stavudine (d4T). To gain knowledge at the molecular level relevant for further synthetic designs, the lack of activity of these compounds was investigated by computational approaches accounting for three main physiological requirements of anti-HIV nucleosides: their drug-likeness, their activation process, and their subsequent interaction with HIV reverse transcriptase (HIV-RT). Our results show that the inclusion of the fused cyclobutane at the 2'- and 3'-positions of the sugar portion provides drug-like compounds. Nonetheless, the presence of this cyclobutane moiety prevents binding orientations consistent with the catalytic activation for at least one of the enzymes known to activate d4T. To the best of our knowledge, this is the first study to explicitly consider the simulation of the entire activation process to rationalize anti-HIV activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.