This paper describes in a detailed manner a method to implement a simultaneous localization and mapping (SLAM) system based on monocular vision for applications of visual odometry, appearance-based sensing, and emulation of range-bearing measurements. SLAM techniques are required to operate mobile robots ina prioriunknown environments using only on-board sensors to simultaneously build a map of their surroundings; this map will be needed for the robot to track its position. In this context, the 6-DOF (degree of freedom) monocular camera case (monocular SLAM) possibly represents the harder variant of SLAM. In monocular SLAM, a single camera, which is freely moving through its environment, represents the sole sensory input to the system. The method proposed in this paper is based on a technique called delayed inverse-depth feature initialization, which is intended to initialize new visual features on the system. In this work, detailed formulation, extended discussions, and experiments with real data are presented in order to validate and to show the performance of the proposal.
This paper describes a practical and reliable algorithm for implementing an Attitude and Heading Reference System (AHRS). This kind of system is essential for real time vehicle navigation, guidance and control applications. When low cost sensors are used, efficient and robust algorithms are required for performance to be acceptable. The proposed method is based on an Extended Kalman Filter (EKF) in a direct configuration. In this case, the filter is explicitly derived from both the kinematic and error models. The selection of this kind of EKF configuration can help in ensuring a tight integration of the method for its use in filter-based localization and mapping systems in autonomous vehicles. Experiments with real data show that the proposed method is able to maintain an accurate and drift-free attitude and heading estimation. An additional result is to show that there is no ostensible reason for preferring that the filter have an indirect configuration over a direct configuration for implementing an AHRS system.
The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.
Abstract-Monocular simultaneous localization and mapping (SLAM) techniques implicitly estimate camera ego-motion while incrementally building a map of the environment. In monocular SLAM, when the number of features in the system state increases, maintaining a real-time operation becomes very difficult. However, it is easy to remove old features from the state to maintain a stable computational cost per frame. If features are removed from the map, then previously mapped areas cannot be recognized to minimize the robot's drift; alternatively, in the context of a real-time virtual sensor that emulates typical sensors as laser for range measurements and encoders for dead reckoning, this limitation should not be a problem. In this paper, a novel framework is proposed to build in real time a consistent map of the environment using the virtual-sensor estimations. At the same time, the proposed approach allows minimizing the drift of the camera-robot position. Experiments with real data are presented to show the performance of this frame of work.
This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.