The growth of marine traffic in harbors, and the subsequent increase in vessel and propulsion system sizes, produces three linked problems at the harbor basin area: (i) higher erosion rates damaging docking structures; (ii) sedimentation areas reducing the total depth; (iii) resuspension of contaminated materials deposited at the seabed. The published literature demonstrates that there are no formulations for twin stern propellers to compute the maximum scouring depth. Another important limitation is the fact that the formulations proposed only use one type of maneuvering during the experimental campaign, assuming that vessels are constantly being undocked. Trying to reproduce the real arrival and departure maneuvers, 24 different tests were conducted at an experimental laboratory in a medium-scale water tank using a twin propeller model to estimate the consequences and the maximum scouring depth produced by stern propellers during the backward/docking and forward/undocking scenarios. Results confirm that the combination of backward and forward scenario differs substantially from the experiments performed so far in the literature using only an accumulative forward scenario, yielding deeper scouring holes at the harbor basin area. The results presented in this paper can be used as guidelines to estimate the effects of regular vessels at their particular docking location. reducing its operability for larger draft vessels and the area has to be dredged often enough for safe navigation (with sufficient keel clearance). Moreover, an environmental problem can also arise from the scouring effects of stern twin propellers of the vessels, and the increase in marine traffic in ports is also increasing the accumulation of heavy contaminants in some areas of the harbor. One of the engineering solutions to improve the water quality of the harbor is to trap the contaminated sediment below a layer of coarser gravel [2]. However, as reported by [3,4], the action of stern propellers over the seafloor can negate the solution and free the contaminated sediment creating an important issue that correlates sediment resuspension of contaminants due to the stern propellers' effects and water quality requirements of the cruise shipping industry.Therefore, the growth of marine traffic in harbors and its subsequent increase in vessel and propulsion system sizes produces three linked problems at the seabed of the harbor basins: (i) higher erosion rates damaging docking structures; (ii) sedimentation areas reducing the total depth of the harbor basin and its operability; and (iii) resuspension of contaminated materials deposited at the seabed.The formulation published and used so far to investigate the erosion rates of ship's propellers is based on empirical equations with a dependent variable named efflux velocity, V 0 . Efflux velocity is defined as the average velocity of the flux nearby a single propeller in a plane parallel to the propeller blades. The first empirical equation for V 0 was developed by [5,6], and detailed the expression ...
The present contribution aims to implement a new methodology to prevent Roll on-Roll off vessels (RO-RO) from causing severe scouring actions. The methodology combines field, experimental, theoretical and numerical tools exchanging information to establish the manoeuvre potential scouring damage. The main contribution is the introduction of a manoeuvre ship simulator to obtain variables that otherwise cannot be obtained in field studies. These variables, all related to ship’s propeller behaviour, are the rotational speed, the pitch ratio and the engine power during the whole manoeuvre. Results show an over-prediction of the theoretical and experimental axial velocity and maximum erosion depth, indicating their clear limitations and the necessity of accurate data to apply the method. The methodology used with the key incorporation of the manoeuvre simulator is revealed to be a very useful tool to study new manoeuvres (including the possibility to work with a single or a couple of tugboats during the docking and undocking manoeuvres) to prevent propeller scouring actions.
Scouring and sedimentation effects on the seabed induced by ship propellers during ship manoeuvring near harbour structures affect both structure stability and ship manoeuvring capabilities. This contribution proposes solutions at an operational level using the automatic identification system (AIS) and a bridge simulator. Two new alternative manoeuvres were designed and tested on a bridge simulator to obtain expected maximum scour depth and the results were compared with that of real manoeuvres (i) using mooring lines, and (ii) with tug assistance. A total of 42 test scenarios combining several manoeuvres and meteorological conditions were reproduced. Results confirmed a clear reduction in erosion depth with the alternative manoeuvres, with total reduction when using the tugboat. The presented methodology can be very useful to port authorities to prevent the effects of ship erosion on harbour infrastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.