BackgroundThe estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens.ResultsThis work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied.ConclusionThe capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.
BackgroundRecovering the network topology and associated kinetic parameter values from time-series data are central topics in systems biology. Nevertheless, methods that simultaneously do both are few and lack generality.ResultsHere, we present a rigorous approach for simultaneously estimating the parameters and regulatory topology of biochemical networks from time-series data. The parameter estimation task is formulated as a mixed-integer dynamic optimization problem with: (i) binary variables, used to model the existence of regulatory interactions and kinetic effects of metabolites in the network processes; and (ii) continuous variables, denoting metabolites concentrations and kinetic parameters values. The approach simultaneously optimizes the Akaike criterion, which captures the trade-off between complexity (measured by the number of parameters), and accuracy of the fitting. This simultaneous optimization mitigates a possible overfitting that could result from addition of spurious regulatory interactions.ConclusionThe capabilities of our approach were tested in one benchmark problem. Our algorithm is able to identify a set of plausible network topologies with their associated parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.