Abstract-Learning motion tasks in a real environment with deformable objects requires not only a Reinforcement Learning (RL) algorithm, but also a good motion characterization, a preferably compliant robot controller, and an agent giving feedback for the rewards/costs in the RL algorithm. In this paper, we unify all these parts in a simple but effective way to properly learn safety-critical robotic tasks such as wrapping a scarf around the neck (so far, of a mannequin).We found that a suitable compliant controller ought to have a good Inverse Dynamic Model (IDM) of the robot. However, most approaches to build such a model do not consider the possibility of having hystheresis of the friction, which is the case for robots such as the Barrett WAM. For this reason, in order to improve the available IDM, we derived an analytical model of friction in the seven robot joints, whose parameters can be automatically tuned for each particular robot. This permits compliantly tracking diverse trajectories in the whole workspace.By using such friction-aware controller, Dynamic Movement Primitives (DMP) as motion characterization and visual/force feedback within the RL algorithm, experimental results demonstrate that the robot is consistently capable of learning tasks that could not be learned otherwise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.