Lambda modes of a nuclear power reactor have interest in reactor physics since they have been used to develop modal methods and to study BWR reactor instabilities. An h-p-adaptation finite element method has been implemented to compute the dominant modes the fundamental mode and the next subcritical modes of a nuclear reactor. The performance of this method has been studied in three benchmark problems, a homogeneous 2D reactor, the 2D BIBLIS reactor and the 3D IAEA reactor.
To simulate the behaviour of a nuclear power reactor it is necessary to be able to integrate the time-dependent neutron diffusion equation inside the reactor core. Here the spatial discretization of this equation is done using a finite element method that permits h-p refinements for different geometries. This means that the accuracy of the solution can be improved refining the spatial mesh (h-refinement) and also increasing the degree of the polynomial expansions used in the finite element method (p-refinement). Transients involving the movement of the control rod banks have the problem known as the rod-cusping effect. Previous studies have usually approached the problem using a fixed mesh scheme defining averaged material properties. The present work proposes the use of a moving mesh scheme that uses spatial meshes that change with the movement of the control rods avoiding the necessity of using equivalent material cross sections for the partially inserted cells. The performance of the moving mesh scheme is tested studying one-dimensional and three-dimensional benchmark problems.
Different spatial modes can be defined for the neutron diffusion equation such as the λ, α and γ-modes. These modes have been successfully used for the analysis of nuclear reactor characteristics. In this work, these modes are studied using a high order finite element method to discretize the equations and also different methods to solve the resulting algebraic eigenproblems, are compared. Particularly, Krylov subspace methods and block-Newton methods have been studied. The performance of these methods has been tested in several 3D benchmark problems: a homogeneous reactor and several configurations of NEACRP reactor.
The simplified spherical harmonics equations are a useful approximation to the stationary neutron transport equation. The eigenvalue problem associated with them is a challenging problem from the computational point of view. In this work, we take advantage of the block structure of the involved matrices to propose the block inverse-free preconditioned Arnoldi method as an efficient method to solve this eigenvalue problem. For the spatial discretization, a continuous Galerkin finite element method implemented with a matrix-free technique is used to keep reasonable memory demands. A multilevel initialization using linear shape functions in the finite element method is proposed to improve the method convergence. This initialization only takes a small percentage of the total computational time. The proposed eigenvalue solver is compared to the standard power iteration method, the Krylov-Schur method and the generalized Davidson method. The numerical results show that it reduces the computational time to solve the eigenvalue problem.
KEYWORDSGeneralized eigenvalue problem; Neutron transport, Multilevel method; Block inverse-free preconditioned Arnoldi method; Generalized Davidson Method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.