Bicyclomycin is a novel, commercially important antibiotic. Information concerning the site of bicyclomycin inhibition in Escherichia coli has been obtained by the production of bicyclomycin resistant mutants by UV irradiation. Selection by growth in the presence of bicyclomycin of a plasmid clone library generated from a highly resistant mutant in recipient antibiotic-sensitive host cells (E. coli strain W3350) has led to the characterization of three different plasmids that confer drug resistance, which contained the gene encoding the transcription termination factor, rho. These mutant rho genes contained single base changes at nucleotide positions 656, 796, and 1009. Preliminary mechanistic information has been obtained by monitoring the polyC-dependent ATPase activity of rho in the absence and presence of bicyclomycin and dihydrobicyclomycin. Addition of bicyclomycin to aqueous solutions containing rho and ATP led to a decrease in the release of inorganic phosphate with an I50 value of 60-70 microM bicyclomycin. This inhibition is comparable to the drug concentration needed to inhibit bacterial growth on plates. No loss of activity was observed when a similar concentration of dihydrobicyclomycin was used in place of bicyclomycin, while use of 10-fold higher concentrations of this derivative led to partial rho inhibition. PolyC-dependent ATPase activity from partially purified rho isolated from the mutant BCMr108 was not inhibited by bicyclomycin at concentrations (200 microM) found to completely inhibit wild-type rho. These cumulative findings are consistent with the notion that bicyclomycin expresses its activity by interfering with the polyC-dependent ATPase activity of rho.
Collagen triple helix, composed of the repeating Gly-Xaa-Yaa (GXY) sequence, is a structural element found in all multicellular animals and also in some prokaryotes. Long GXY polymers are highly regarded components used in food, cosmetic, biomedical, and pharmaceutical industries. In this study, we explore a new concept for the production of recombinant GXY polymers which are based on the sequence of "prokaryotic collagens", the streptococcal collagen-like proteins Scl1 and Scl2. Analysis of 50 Scl variants identified the amino acid distribution and GXY-repeat usage that are involved in the stabilization of the triple helix in Scls. Using circular dichroism spectroscopy and electron microscopy, we show that significantly different recombinant rScl polypeptides form stable, unhydroxylated homotrimeric triple helices that can be produced both intra- and extracellularly in the Escherichia coli. These rScl constructs containing 20 to 129 GXY repeats had mid-point melting temperatures between 32 and 39 degrees C. Altogether, Scl-derived collagens, which are different from the mammalian collagens, can form stable triple helices under physiological conditions and can be used for the production of recombinant GXY polymers with a wide variety of potential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.