The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of high economic impact and has become an emerging model for developing new genetic control strategies as an alternative to insecticides. Here, we report the successful adaptation of CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled, solubilized Cas9 ribonucleoprotein complexes (RNPs) loaded with gene-specific single guide RNAs (sgRNA) into early embryos. When targeting the eye pigmentation gene white eye (we), a high rate of somatic mosaicism in surviving G0 adults was observed. Germline transmission rate of mutated we alleles by G0 animals was on average above 52%, with individual cases achieving nearly 100%. We further recovered large deletions in the we gene when two sites were simultaneously targeted by two sgRNAs. CRISPR-Cas9 targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) caused segmental malformations in late embryos and in hatched larvae. Mutant phenotypes correlate with repair by non-homologous end-joining (NHEJ) lesions in the two targeted genes. This simple and highly effective Cas9 RNP-based gene editing to introduce mutations in C. capitata will significantly advance the design and development of new effective strategies for pest control management.
The re-examination of marine alien species or Non-indigenous species (NIS) reported in Italian Seas by December 2018, is here provided, particularly focusing on establishment success, year of first record, origin, potential invasiveness, and likely pathways. Furthermore, their distribution is assessed according to marine subregions outlined by the European Union (EU) Marine Strategy Framework Directive: Adriatic Sea (ADRIA), Ionian Sea and Central Mediterranean Sea (CMED), and Western Mediterranean Sea (WMED). In Italy, 265 NIS have been detected with the highest number of species being recorded in the CMED (154 species) and the WMED (151 species), followed by the ADRIA (143). Most of these species were recorded in more than one subregion. The NIS that have established stable populations in Italian Seas are 180 (68%), among which 26 have exhibited invasive traits.Among taxa involved, Macrophyta rank first with 65 taxa. Fifty-five of them are established in at least one subregion, mostly in the ADRIA and the CMED. Crustacea rank second with 48 taxa, followed by Polychaeta with 43 taxa, Mollusca with 29 taxa, and Pisces with 28 taxa, which were mainly reported from the CMED. In the period 2012-2017, 44 new alien species were recorded, resulting in approximately one new entry every two months. Approximately half of the NIS (~52%) recorded in Italy have most likely arrived through the transport-stowaway pathway related to shipping traffic (~28% as biofoulers, ~22% in ballast waters, and ~2% as hitchhikers). The second most common pathway is the unaided movement with currents (~19%), followed by the transport-contaminant on farmed shellfishes pathway (~18%). Unaided is the most common pathway for alien Fisshes, especially in CMED. Escapes from confinement account for ~3% and release in nature for ~2% of the NIS. The present NIS distribution hotspots for new introductions were defined on the first recipient area/location in Italy. In ADRIA the hotspot is Venice which accounts for the highest number of alien taxa introduced in Italy, with 50 newly recorded taxa. In the CMED, hotspots of introduction are the Taranto and Catania Gulfs, hosting 21 first records each. The Strait of Sicily represents a crossroad between the alien taxa from the Atlantic Ocean and the Indo-Pacific area. In the WMED, hotspots of bioinvasions include the Gulfs of Naples, Genoa and Livorno.This review can serve as an updated baseline for future coordination and harmonization of monitoring initiatives under international, EU and regional policies, for the compilation of new data from established monitoring programs, and for rapid assessment surveys.
Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able to colonize a wide array of environments. In addition to their fundamental role as diazotrophs, they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various biological and ecological functions to be further investigated. Among all the identified species, cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates. These symbioses have been demonstrated to dramatically change the cyanobacteria physiology, inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals and activate silenced pathways. Drug discovery studies demonstrated that those molecules have interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses in marine environments, considering them not only as diazotrophs but taking into consideration exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and the candidate biotechnological value for pharmaceutical and nutraceutical applications.
Brown macroalgae belonging to the genus Cystoseira (Fucales: Sargassaceae) are canopy-forming organisms the recent decline of which at a basin and local scale has been widely documented, which urgently calls for research to fill knowledge gaps and support new and effective measures for protection. We, hereby, characterised the molluscan assemblages associated with three Cystoseira taxa (C. amentacea, C. compressa and C. crinita) from Ischia Island (Italy, Tyrrhenian Sea), and tested whether different congeneric taxa may syntopically support a different biota. In particular, these assemblages were compared among three Cystoseira species, between two times of sampling (June–July 2015 and June–July 2016), and among six sites in terms of multivariate structure (identity and relative abundances of constituting taxa combined, and presence–absence composition), as well as for synthetic measures of diversity, including the total richness of taxa, the exponential Shannon index and the reciprocal Simpson index. In total, 24736 molluscan individuals were collected, overall belonging to 52 taxa. The majority of the identified species included micrograzers and filter feeders, which is in agreement with similar previous studies. The composition of associated molluscan assemblages, which was mainly represented by juvenile individuals, differed among the three Cystoseira species, suggesting that even congeneric taxa do not support an analogous benthic fauna. The present findings have shed light on the molluscan biota associated with Cystoseira taxa in the Gulf of Naples and strengthened the importance of such habitat-forming macroalgae in structuring the local infralittoral invertebrate biodiversity and as a nursery for species-specific associated molluscs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.