Graphical Abstract Highlights d Severe COVID-19 patients display immune dysregulation or macrophage activation syndrome d Severe respiratory failure is associated with a major decrease of HLA-DR on CD14 monocytes d CD4 cell and NK cell cytopenias are characteristics of severe COVID-19 d IL-6 blocker Tocilizumab partially rescues SARS-CoV-2associated immune dysregulation
Background
The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system.
Methods
In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings.
Results
Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host.
Conclusions
Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.
It has been suggested that in patients with adult respiratory distress syndrome (ARDS), intrinsic positive end-expiratory pressure (PEEPi) is generated by a disproportionate increase in expiratory flow resistance. Using the negative expiratory pressure (NEP) technique, we assessed whether expiratory flow limitation (EFL) and PEEPi were present at zero PEEP in 10 semirecumbent, mechanically ventilated ARDS patients. Because bronchodilators may decrease airway resistance, we also investigated the effect of nebulized salbutamol on EFL, PEEPi, and respiratory mechanics in these patients, and in seven patients we measured the latter variables in the supine position as well. In the semirecumbent position, eight of the 10 ARDS patients exhibited tidal EFL, ranging from 5 to 37% of the control tidal volume (VT), whereas PEEPi was present in all 10 subjects, ranging from 0.4 cm H(2)O to 7.7 cm H(2)O. The onset of EFL was heralded by a distinct inflection point on the expiratory flow-volume curve, which probably reflected small-airway closure. Administration of salbutamol had no statistically significant effect on PEEPi, EFL (as %VT), or respiratory mechanics. EFL (%VT) and PEEPi were significantly higher in the supine position than in the semirecumbent position, whereas the other respiratory variables did not change. Our results suggest that in the absence of externally applied PEEP, most ARDS patients exhibit EFL associated with small-airway closure and a concomitant PEEPi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.