Diabetic retinopathy is a leading cause of adult vision loss and blindness. Much of the retinal damage that characterizes the disease results from retinal vascular leakage and nonperfusion. Diabetic retinal vascular leakage, capillary nonperfusion, and endothelial cell damage are temporary and spatially associated with retinal leukocyte stasis in early experimental diabetes. Retinal leukostasis increases within days of developing diabetes and correlates with the increased expression of retinal intercellular adhesion molecule-1 (ICAM-1) and CD18. Mice deficient in the genes encoding for the leukocyte adhesion molecules CD18 and ICAM-1 were studied in two models of diabetic retinopathy with respect to the long-term development of retinal vascular lesions. CD18-/- and ICAM-1-/- mice demonstrate significantly fewer adherent leukocytes in the retinal vasculature at 11 and 15 months after induction of diabetes with STZ. This condition is associated with fewer damaged endothelial cells and lesser vascular leakage. Galactosemia of up to 24 months causes pericyte and endothelial cell loss and formation of acellular capillaries. These changes are significantly reduced in CD18- and ICAM-1-deficient mice. Basement membrane thickening of the retinal vessels is increased in long-term galactosemic animals independent of the genetic strain. Here we show that chronic, low-grade subclinical inflammation is responsible for many of the signature vascular lesions of diabetic retinopathy. These data highlight the central and causal role of adherent leukocytes in the pathogenesis of diabetic retinopathy. They also underscore the potential utility of anti-inflammatory treatment in diabetic retinopathy.
Leukocyte adhesion to the diabetic retinal vasculature results in blood-retinal barrier breakdown, capillary nonperfusion, and endothelial cell injury and death. Intercellular adhesion molecule-1 (ICAM-1) and the leukocyte integrin CD18 are required for these processes. Diabetes was induced in Long Evans rats, resulting in a two- to threefold increase in retinal leukocyte adhesion. Following one week of diabetes, neutrophil CD11a, CD11b, and CD18 expression was increased significantly, as were retinal ICAM-1 levels. Animals were treated with aspirin, a cyclooxygenase 2 (COX-2) inhibitor (meloxicam), or a soluble tumor necrosis factor alpha (TNF-alpha) receptor/Fc construct (TNFR-Fc, etanercept). High-dose aspirin, etanercept, and high-dose meloxicam each reduced leukocyte adhesion and suppressed blood-retinal barrier breakdown. High-dose aspirin also reduced the expression of CD11a, CD11b, and CD18, whereas meloxicam and etanercept did not. High-dose aspirin, etanercept, and high-dose meloxicam each reduced retinal ICAM-1 expression. Aspirin and meloxicam both lowered retinal TNF-alpha levels. Notably, aspirin, meloxicam, and etanercept did not change retinal vascular endothelial growth factor levels. High-dose aspirin, etanercept and high-dose meloxicam, each suppressed the retinal expression of eNOS and the DNA-binding capacity of retinal nuclear factor-kappaB. High-dose aspirin also suppressed Erk kinase activity, which is involved in CD18 up-regulation. Taken together, these data identify COX-2 and TNF-alpha as operative in the early signature pathologies of diabetic retinopathy, a newly recognized inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.