Glucose transport into nonneuronal brain cells uses differently glycosylated forms of the glucose transport protein, GLUT1. Microvascular GLUT1 is readily seen on immunocytochemistry, although its parenchymal localization has been difficult. Following ischemia, GLUT1 mRNA increases, but whether GLUT1 protein also changes is uncertain. Therefore, we examined the immunocytochemical distribution of GLUT1 in normal rat brain and after transient global forebrain ischemia. A novel immunocytochemical finding was peptide-inhibitable GLUT1 immunoreactive staining in parenchyma as well as in cerebral microvessels. In nonischemic rats, parenchymal GLUT1 staining co-localizes with glial fibrillary acidic protein (GFAP) in perivascular foot processes of astrocytes. By 24 h after ischemia, both microvascular and nonmicrovascular GLUT1 immunoreactivity increased widely, persisting at 4 days postischemia. Vascularity within sections of brain similarly increased after ischemia. Increased parenchymal GLUT1 expression was paralleled by staining for GFAP, suggesting that nonvascular GLUT1 overexpression may occur in reactive astrocytes. A final observation was a rapid expression of inducible heat shock protein (HSP)70 in hippocampus and cortex by 24 h after ischemia. We conclude that GLUT1 is normally immunocytochemically detectable in cerebral microvessels and parenchyma and that parenchymal expression occurs in some astroglia. After global cerebral ischemia, GLUT1 overexpression occurs rapidly and widely in microvessels and parenchyma; its overexpression may be related to an immediate early-gene form of response to cellular stress.
Precise localization of glucose transport proteins in the brain has proved difficult, especially at the ultrastructural level. This has limited further insights into their cellular specificity, subcellular distribution, and function. In the present study, preembedding ultrastructural immunocytochemistry was used to localize the major brain glucose transporters, GLUTs 1 and 3, in vibratome sections of rat brain. Our results support the view that, besides being present in endothelial cells of central nervous system (CNS) blood vessels, GLUT 1 is present in astrocytes. GLUT 1 was detected in astrocytic end feet around blood vessels, and in astrocytic cell bodies and processes in both gray and white matter. GLUT 3, the neuronal glucose transporter, was located primarily in pre- and postsynaptic nerve endings and in small neuronal processes. This study: (1) affirms that GLUT 3 is neuron-specific, (2) shows that GLUT 1 is not normally expressed in detectable quantities by neurons, (3) suggests that glucose is readily available for synaptic energy metabolism based on the high concentration of GLUT 3 in membranes of synaptic terminals, and (4) demonstrates significant intracellular and mitochondrial localization of glucose transport proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.