Background and aims. Patients with Myasthenia gravis (MG) are considered vulnerable as they may present with respiratory muscle weakness and because they are on immunosuppressive treatment; thereby, COVID-19 may have a detrimental effect on these patients. Vaccines against COVID-19 are currently available and it has been shown as they can prevent severe COVID-19 in vulnerable patients. Notwithstanding their efficacy, vaccine hesitancy has not been completely dispelled in the general population. Unfortunately, there is limited data about the safety of these vaccines in MG patients. The aims of this study are to evaluate the impact of COVID-19 in a MG cohort, the adherence to COVID-19 vaccination in Italy and vaccine safety in MG patients. Methods. A retrospective cohort study of MG patients attending the Neuromuscular Clinic of the University Hospital “Paolo Giaccone” of Palermo, Italy, was performed. Patients underwent telephone interviews with a dedicated questionnaire on SARS-CoV-2 vaccination and infection. Vaccine safety was assessed though the evaluation of vaccine-related adverse events (AEs) and comparisons of MG-ADL scores before and after vaccination. Patient worsening was defined as two or more point increases in MG-ADL scores. Results. From a total of 90 participants, 75 answered the questionnaire and 70.5% of them (n = 53) received the vaccine; ten patients did not receive vaccination and 3 patients were partially vaccinated. Among the vaccinated patients, about 45% (n = 24) experienced at least one AE, with a complete resolution within one week. No serious AEs and life-threatening conditions were observed. Globally, MG-ADL scores did not worsen after vaccination. Nine unvaccinated patients experienced SARS-CoV2 infection and four of them (44%) died—one patient required respiratory support, whereas three patients were asymptomatic. Conclusions. COVID-19 significantly impacted MG patients with an increase in mortality due to respiratory sequelae. Vaccines against SARS-CoV-2 showed good short-term safety in MG patients, who may take advantage of vaccination to avoiding life-threatening complications such as COVID-19 pneumonia.
Vitamin D is a fat-soluble secosteroid, traditionally considered a key regulator of bone metabolism, calcium and phosphorous homeostasis. Its action is made possible through the binding to the vitamin D receptor (VDR), after which it directly and indirectly modulates the expression of thousands of genes. Vitamin D is important for brain development, mature brain activity and associated with many neurological diseases, including Parkinson’s disease (PD). High frequency of vitamin D deficiency in patients with Parkinson’s disease compared to control population was noted nearly twenty years ago. This finding is of interest given vitamin D’s neuroprotective effect, exerted by the action of neurotrophic factors, regulation of nerve growth or through protection against cytotoxicity. Vitamin D deficiency seems to be related to disease severity and disease progression, evaluated by Unified Parkinson’s Disease Rating Scale (UPDRS) and Hoehn and Yahr (H&Y) scale, but not with age of PD onset and duration of disease. Additionally, fall risk has been associated with lower vitamin D levels in PD. However, while the association between vitamin D and motor-symptoms seems to be possible, results of studies investigating the association with non-motor symptoms are conflicting. In addition, very little evidence exists regarding the possibility to use vitamin D supplementation to reduce clinical manifestations and disability in patients with PD. However, considering the positive balance between potential benefits against its limited risks, vitamin D supplementation for PD patients will probably be considered in the near future, if further confirmed in clinical studies.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with several neurological disorders including headache, facial palsy, encephalitis, stroke, demyelinating disorders. The present report will discuss cases of multiple sclerosis (MS) onset and relapse both beginning early after SARS-CoV-2 infection. In both cases, magnetic resonance imaging (MRI) showed widespread bilateral subcortical and periventricular active lesions. Serum IgG against SARS-CoV-2 Spike antigens confirmed seroconversion with titers that are considered not definitely protective against possible reinfection. We hypothesize that SARS-CoV-2 infection, as previously reported for other viruses, could drive an active inflammatory response that can contribute either to the onset of MS or its relapse. The presented data further support the importance of vaccination in individuals with MS.
The prevalence and impact of imaging findings detected during screening procedures in patients undergoing transcranial MR-guided Focused Ultrasound (tcMRgFUS) thalamotomy for functional neurological disorders has not been assessed yet. This study included 90 patients who fully completed clinical and neuroradiological screenings for tcMRgFUS in a single-center. The presence and location of preoperative imaging findings that could impact the treatment were recorded and classified in three different groups according to their relevance for the eligibility and treatment planning. Furthermore, tcMRgFUS treatments were reviewed to evaluate the number of transducer elements turned off after marking as no pass regions the depicted imaging finding. A total of 146 preoperative imaging findings in 79 (87.8%) patients were detected in the screening population, with a significant correlation with patients’ age (rho = 483, p < 0.001). With regard of the group classification, 119 (81.5%), 26 (17.8%) were classified as group 1 or 2, respectively. One patient had group 3 finding and was considered ineligible. No complications related to the preoperative imaging findings occurred in treated patients. Preoperative neuroradiological findings are frequent in candidates to tcMRgFUS and their identification may require the placement of additional no-pass regions to prevent harmful non-targeted heating.
The cluster headache is a primary headache characterized by attacks of unilateral pain associated with ipsilateral cranial autonomic features. These attacks recur in clusters during the years alternating with periods of complete remission, and their onset is often during the night. This annual and nocturnal periodicity hides a strong and mysterious link among CH, sleep, chronobiology and circadian rhythm. Behind this relationship, there may be the influence of genetic components or of anatomical structures such as the hypothalamus, which are both involved in regulating the biological clock and contributing even to the periodicity of cluster headaches. The bidirectional relationship manifests itself also with the presence of sleep disturbances in patients affected by cluster headaches. What if the key to studying the physiopathology of such disease could rely on the mechanisms of chronobiology? The purpose of this review is to analyze this link in order to interpret the pathophysiology of cluster headaches and the possible therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.