Background This study applies an umbrella review approach to summarise the global evidence on the risk of severe COVID-19 outcomes in patients with pre-existing health conditions. Methods Systematic reviews (SRs) were identified in PubMed, Embase/Medline and seven pre-print servers until December 11, 2020. Due to the absence of age-adjusted risk effects stratified by geographical regions, a re-analysis of the evidence was conducted. Primary studies were extracted from SRs and evaluated for inclusion in the re-analysis. Studies were included if they reported risk estimates (odds ratio (OR), hazard ratio (HR), relative risk (RR)) for hospitalisation, intensive care unit admission, intubation or death. Estimated associations were extracted from the primary studies for reported pre-existing conditions. Meta-analyses were performed stratified for each outcome by regions of the World Health Organization. The evidence certainty was assessed using GRADE. Registration number CRD42020215846. Results In total, 160 primary studies from 120 SRs contributed 464 estimates for 42 pre-existing conditions. Most studies were conducted in North America, European, and Western Pacific regions. Evidence from Africa, South/Latin America, and the Eastern Mediterranean region was scarce. No evidence was available from the South-East Asia region. Diabetes (HR range 1.2–2.0 (CI range 1.1–2.8)), obesity (OR range 1.5–1.75 (CI range 1.1–2.3)), heart failure (HR range 1.3–3.3 (CI range 0.9–8.2)), COPD (HR range 1.12–2.2 (CI range 1.1–3.2)) and dementia (HR range 1.4–7.7 (CI range 1.2–39.6)) were associated with fatal COVID-19 in different regions, although the estimates varied. Evidence from Europe and North America showed that liver cirrhosis (OR range 3.2–5.9 (CI range 0.9–27.7)) and active cancer (OR range 1.6–4.7 (CI range 0.5–14.9)) were also associated with increased risk of death. Association between HIV and undesirable COVID-19 outcomes showed regional heterogeneity, with an increased risk of death in Africa (HR 1.7 (CI 1.3–2.2)). GRADE certainty was moderate to high for most associations. Conclusion Risk of undesirable COVID-19 health outcomes is consistently increased in certain patient subgroups across geographical regions, showing high variability in others. The results can be used to inform COVID-19 vaccine prioritisation or other intervention strategies.
Evidence on COVID-19 vaccine efficacy/effectiveness (VE) in preventing asymptomatic SARS-CoV-2 infections is needed to guide public health recommendations for vaccinated people. We report interim results of a living systematic review. We identified a total of 30 studies that investigated VE against symptomatic and/or asymptomatic infection. In fully vaccinated individuals, VE against symptomatic and asymptomatic infections was 80–90% in nearly all studies. Fully vaccinated persons are less likely to become infected and contribute to transmission.
BackgroundThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is currently the dominant variant globally. This third interim analysis of a living systematic review summarizes evidence on the effectiveness of the coronavirus disease 2019 (COVID-19) vaccine (vaccine effectiveness, VE) and duration of protection against Omicron.MethodsWe systematically searched literature on COVID-19 for controlled studies, evaluating the effectiveness of COVID-19 vaccines approved in the European Union up to 14/01/2022, complemented by hand searches of websites and metasearch engines up to 11/02/2022. We considered the following comparisons: full primary immunization vs. no vaccination, booster immunization vs. no vaccination, and booster vs. full primary immunization. VE against any confirmed SARS-CoV-2 infection, symptomatic, and severe COVID-19 (i.e., COVID-19-related hospitalization, ICU admission, or death) was indicated, providing estimate ranges. Meta-analysis was not performed due to high study heterogeneity. The risk of bias was assessed with ROBINS-I, and the certainty of the evidence was evaluated using GRADE.ResultsWe identified 26 studies, including 430 to 2.2 million participants, which evaluated VE estimates against infections with the SARS-CoV-2 Omicron variant. VE against any confirmed SARS-CoV-2 infection ranged between 0–62% after full primary immunization and between 34–66% after a booster dose compared to no vaccination. VE range for booster vs. full primary immunization was 34–54.6%. After full primary immunization VE against symptomatic COVID-19 ranged between 6-76%. After booster immunization VE ranged between 3-84% compared to no vaccination and between 56-69% compared to full primary immunization. VE against severe COVID-19 ranged between 3-84% after full primary immunization and between 12-100% after booster immunization compared to no vaccination, and 100% (95% CI 71.4-100) compared to full primary immunization (data from only one study). VE was characterized by a moderate to strong decline within 3–6 months for SARS-CoV-2 infections and symptomatic COVID-19. Against severe COVID-19, protection remained robust for at least up to 6 months. Waning immunity was more profound after primary than booster immunization. The risk of bias was moderate to critical across studies and outcomes. GRADE certainty was very low for all outcomes.ConclusionsUnder the Omicron variant, the effectiveness of EU-licensed COVID-19 vaccines in preventing any SARS-CoV-2 infection is low and only short-lasting after full primary immunization, but can be improved by booster vaccination. VE against severe COVID-19 remains high and is long-lasting, especially after receiving the booster vaccination.
Tick-borne encephalitis (TBE) vaccination coverage remains low in Germany. Our case–control study (2018–2020) aimed to examine reasons for low vaccine uptake, vaccine effectiveness (VE), and vaccine breakthrough infections (VBIs). Telephone interviews (581 cases, 975 matched controls) covered vaccinations, vaccination barriers, and confounders identified with directed acyclic graphs. Multivariable logistic regression determined VE as 1—odds ratio with 95% confidence intervals (CI). We additionally calculated VE with the Screening method using routine surveillance and vaccination coverage data. Main vaccination barriers were poor risk perception and fear of adverse events. VE was 96.6% (95% CI 93.7–98.2) for ≥ 3 doses and manufacturer-recommended dosing intervals. Without boosters, VE after ≥ 3 doses at ≤ 10 years was 91.2% (95% CI 82.7–95.6). VE was similar for homologous/heterologous vaccination. Utilising routine surveillance data, VE was comparable (≥ 3 doses: 92.8%). VBIs (n = 17, 2.9% of cases) were older, had more comorbidities and higher severity than unvaccinated cases. However, only few VBIs were diagnostically confirmed; 57% of re-tested vaccinated cases (≥ 1 dose, n = 54) proved false positive. To increase TBE vaccine uptake, communication efforts should address complacency and increase confidence in the vaccines’ safety. The observed duration of high VE may inform decision-makers to consider extending booster intervals to 10 years.
Tick-borne encephalitis (TBE) is a growing public health problem with increasing incidence and expanding risk areas. Improved prevention requires better understanding of the spatial distribution and ecological determinants of TBE transmission. However, a TBE risk map at sub-district level is still missing for Germany. We investigated the distribution and geo-spatial characteristics of 567 self-reported places of probable TBE infection (POI) from 359 cases notified in 2018–2020 in the study area of Bavaria and Baden-Wuerttemberg, compared to 41 confirmed TBE foci and 1701 random comparator places. We built an ecological niche model to interpolate TBE risk to the entire study area. POI were distributed heterogeneously at sub-district level, as predicted probabilities varied markedly across regions (range 0–93%). POI were spatially associated with abiotic, biotic, and anthropogenic geo-spatial characteristics, including summer precipitation, population density, and annual frost days. The model performed with 69% sensitivity and 63% specificity at an optimised probability threshold (0.28) and an area under the curve of 0.73. We observed high predictive probabilities in small-scale areas, consistent with the known circulation of the TBE virus in spatially restricted microfoci. Supported by further field work, our findings may help identify new TBE foci. Our fine-grained risk map could supplement targeted prevention in risk areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.