Objectives Patients undergoing surgery for locally advanced lung cancer involving the chest wall require anatomical lung with extensive en-bloc chest wall resection and appropriate reconstruction.In this proof-of-concept study, we aimed to produce personalized three-dimensional (3D)-printed chest wall prosthesis for a patient undergoing chest wall resection and reconstruction using clinically obtained computed tomography (CT) data. Methods Preoperative CT scans of three patients undergoing chest wall resection were analyzed and the areas of resection segmented. This was then used to produce a 3D print of the chest wall and a silicone mold was created from the model. This mold was sterilized and used to produce methyl methacrylate prostheses which were then implanted into the patients. Results Three patients had their chest wall reconstructed using this technique to produce a patient specific prosthesis. There were no early complications or deaths. Conclusions It is possible to use 3D printing to produce a patient specific chest wall reconstruction for patients undergoing chest wall resection for malignancy that is cost-effective. This chest wall is thought to provide stability in the form of prosthetic ribs as well compliance in the form of an expanded polytetrafluoroethylene patch. Further research is required to measure chest wall compliance during the respiratory cycle and long-term follow-up from this method.
The aim of the study was to assess the degree of aerosolisation in different chest drainage systems according to different air leak volumes, in a simulated environment. This novel simulation model was designed to produce an air leak by passing air through and agitating a fluorescent fluid. The air leak volume and amount of fluorescent fluid were tested in various combinations and aerosolisation was assessed at 10-minute intervals using the ultraviolet light. The following chest drainage systems were compared: (1) single-chamber chest drainage system, (2) 3-compartment wet-dry suction chest drainage system, (3) digital drainage and monitoring system. The impact of suction (−2 and −4 kPa) in generating aerosolised particles was tested as well. A total number of 187 of 10-minute interval measurements were performed. The single-chamber chest drainage system generated the largest number of aerosolised particles at different air leak volumes and drainage output. The 3-compartment wet-dry suction system and the digital drainage and monitoring system did not generate any identifiable aerosolised particles at any of the air leak or drain output volumes considered. Suction applied to the chest drainage systems did not have an effect on aerosolisation. Aerosol generation in the simulated air-leak model demonstrated the potential risk of SARS-CoV-2 spread in the clinical setting. Full personal protective equipment must be used in patients with an air leak. Single-chamber chest drainage system generates the highest rate of aerosolised particles and it should not be used as an open system in patients with an air leak.
Novel commercially available software has enabled registration of both CT and MRI images to rapidly fuse with X-ray fluoroscopic imaging. We describe our initial experience performing cardiac catheterisations with the guidance of 3D imaging overlay using the VesselNavigator system (Philips Healthcare, Best, NL). A total of 33 patients with CHD were included in our study. Demographic, advanced imaging, and catheterisation data were collected between 1 December, 2016 and 31 January, 2019. We report successful use of this technology in both diagnostic and interventional cases such as placing stents and percutaneous valves, performing angioplasties, occlusion of collaterals, and guidance for lymphatic interventions. In addition, radiation exposure was markedly decreased when comparing our 10–15-year-old coarctation of the aorta stent angioplasty cohort to cases without the use of overlay technology and the most recently published national radiation dose benchmarks. No complications were encountered due to the application of overlay technology. 3D CT or MRI overlay for CHD intervention with rapid registration is feasible and aids decisions regarding access and planned angiographic angles. Operators found intraprocedural overlay fusion registration using placed vessel guidewires to be more accurate than attempts using bony structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.