In recent years, exercise on a water treadmill has come to have great relevance in rehabilitation and training centres for sport horses. Its use exploits certain physical properties of water, related to the fundamental principles of hydrodynamics, such as buoyancy, viscosity, hydrostatic pressure, and water temperature. These properties together with deliberate specification of the depth of the water and the velocity of the treadmill provide a combination of parameters that can be varied according to the purpose of the rehabilitation or training programme, the disease to rehabilitate, or the healing phase. In the current article, kinematic adaptations to exercise on a water treadmill and the direct application of such exercise to the rehabilitation of superficial and deep digital flexor tendon and accessory ligament injuries and back and joint diseases are described.
Horse trainers often claim that exercise on a water treadmill (WT) leads to a greater muscle power and development compared to terrestrial locomotion, because of the greater viscosity of water compared to air. This research assesses locomotor changes measured with accelerometers fixed in the pectoral region and in the sacrum midline in six horses subjected to exercise sessions of 40 min duration on a WT without water (DT), and with water at the depth of fetlock (FET) and carpus (CAR) with velocities of 6 km/h and at the depth of stifle (STF) at 5 km/h. Another five horses performed the same exercise sessions but always with a velocity of 5 km/h. Total power increased from DT to FET and CAR, without significant differences between CAR and STF depths when the velocity was the same. However, a significant decrease was found when the velocity was reduced. The greater total power with water was distributed mainly to the dorsoventral axis, with significant increases in dorsoventral displacement and dorsoventral power. Both parameters were significantly affected by velocity and water depth. In conclusion, total and dorsoventral powers increased with velocity and water depth, leading to reduction in longitudinal and mediolateral power, during exercise on a WT.
Capacitive resistive electric transfer (CRET), a radiofrequency at 448 kHz, increases flexibility in quadricep muscles of human athletes. To assess whether CRET would result in clinical and biomechanical improvements in horses with thoracolumbar pain, 18 sport horses were divided into two groups: CRET (n = 9), subjected to four CRET sessions, during two consecutive weeks, and SHAM (n = 9), subjected to the same procedure with the device off. Clinical examination and accelerometry were performed before and after the four sessions. During the study, horses were in training and in active competition, and did not receive any other treatment. Mann-Whitney and a Wilcoxon matched pair tests were used to compare between the SHAM and CRET groups and before and after the intervention, respectively. CRET horses showed increased dorsoventral (p < 0.002), mediolateral and total power (p < 0.01) after the intervention, suggesting increased back flexibility. SHAM horses did not show any of these modifications after the intervention. No changes were found in the dorsoventral displacement of the gravity center in either group. Thoracolumbar pain decreased one degree after CRET (p = 0.002), and it did not change after SHAM. Epaxial muscle pain decreased two degrees after CRET (p = 0.03) and one degree after SHAM (p = 0.01). These results reflected that CRET therapy would increase back flexibility and decrease thoracolumbar and epaxial pain.
BackgroundIntravenous pharmacokinetics and oral bioavailability of cannabidiol (CBD) with different formulations have not been investigated in horses and may represent a starting point for clinical studies.ObjectivesTo describe pharmacokinetics after intravenous and oral administrations with oil and micellar formulations and simulate different treatments.Study designSingle intravenous experiment and two‐way randomised oral experiments, Latin‐square design.MethodsEight healthy horses received intravenous CBD at 1.00 mg/kg dose, oral CBD in sesame oil and in micellar formulation, both at 10.00 mg/kg. Concentrations were measured using LC–MS/MS and fitted by nonlinear mixed effect modelling. Parameters obtained were used to simulate single and multiple treatments at steady state.ResultsIntravenous and oral concentrations were simultaneously fitted using a three‐compartment model. Final estimates indicate that CBD has a volume of distribution of 36 L/kg associated with a systemic clearance of 1.46 L/h/kg and half‐lives ranged between 24 and 34 h. Oral bioavailability was close to 14% for both oral administrations. Simulated dose regimen of CBD every 12 and 24 h predicted similar percentages to reach effective plasma concentration with both oral formulation at 10.00 mg/kg.Main limitationsA small horse population was used (8 horses per trial).Conclusions and clinical importanceOral bioavailability was low at the doses studied but fell within the range described for horse and other species. CBD had a high steady‐state volume of distribution, a high clearance and long half‐lives. No adverse reactions were detected at any dose or route. The micellar formulation showed a faster absorption and higher concentration peak, while the oil formulation presented lower levels, but more maintained over time. Simulations predicted that both could be useful in multiple oral dose treatments. These results indicated that CBD could be of interest, but further studies are needed to evaluate its clinical use in horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.