Background: Myeloperoxidase promotes oxidative stress during inflammation by producing hypochlorous acid. Results: Ceruloplasmin was a potent inhibitor of myeloperoxidase and slowed its activity in plasma from wild type mice compared with ceruloplasmin knock-out animals. Conclusion: Ceruloplasmin is a physiologically relevant inhibitor of myeloperoxidase. Significance: Ceruloplasmin will provide a protective shield against oxidant production by myeloperoxidase during inflammation.
The metal-reducing δ-proteobacterium Geobacter sulf urreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulf urreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS −2 as an electron donor. The observed K M was 38.5 ± 3.7 μM H 2 O 2 and v max was 0.78 ± 0.03 μmol of H 2 O 2 •min −1 •mg −1 , resulting in a turnover number k cat = 0.46 • s −1 . In contrast, no Fe(III) reductase activity was observed. MacA was found to display electrochemical properties similar to other bacterial diheme peroxidases, in addition to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergoes conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein, the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation.
Background: Lactoperoxidase plays a key role in host defense by oxidizing thiocyanate to the bactericidal agent hypothiocyanite. Results: Urate is a good substrate for lactoperoxidase and competes with thiocyanate for oxidation in vitro. Conclusion: Urate is a likely physiological substrate for lactoperoxidase. Significance: Urate may influence the bactericidal activity of lactoperoxidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.