(a) Folate serum concentrations in Greek and Albanian mothers and in their neonates were similar, (b) vitamin B(12) serum concentrations, evaluated for first time in these ethnic groups, were significantly low in Albanians, both in mothers and newborns, (c) the low protein and especially the reduced animal protein intake from the Albanian mothers, possibly due to their low socio-economic status, may be responsible for their decreased vitamin B(12) serum concentrations and (d) vitamin B(12) supplementation along with an increase of animal protein intake might improve the vitamin serum status in the Albanians.
We report 2 children with X-linked chronic granulomatous disease (X-CGD) who underwent hematopoietic stem cell transplantation (HSCT) using grafts from their siblings selected before implantation to be both unaffected and HLA-matched donors. Preimplantation genetic diagnosis (PGD) along with HLA-typing were performed on preimplantation embryos by single-cell multiplex polymerase chain reaction using informative short tandem repeat markers in the HLA locus together with the gene region containing the mutations. Two singleton pregnancies resulted from the intrauterine transfer of selected embryos; these developed to term, producing 1 healthy female and 1 X-CGD carrier female, which are HLA-identical siblings to the 2 affected children. Combined grafts of umbilical cord blood (UCB) and bone marrow (BM) stem cells were administered to the recipients after myeloablative (MA) conditioning at the ages of 4.5 years and 4 years, respectively. Both patients are well, with complete donor hematopoietic and immunologic reconstitution, at 18 and 13 months posttransplantation, respectively. This report demonstrates that HSCT with HLA-matched sibling donors created by PGD/HLA typing of in vitro fertilized embryos is a realistic therapeutic option and should be presented as such to families with children who require a non-urgent HSCT but lack an HLA-genoidentical donor.
Current clinical protocols used for isolation and purification of mesenchymal stem cells (MSC) are based on long-term cultures starting with bone marrow (BM) mononuclear cells. Using a commercially available immunoselection kit for enrichment of MSC, we investigated whether culture of enriched BM-CD105+ cells could provide an adequate number of pure MSC in a short time for clinical use in the context of graft versus host disease and graft failure/rejection. We isolated a mean of 5.4 × 105 ± 0.9 × 105 CD105+ cells from 10 small volume (10–25 ml) BM samples achieving an enrichment >100-fold in MSC. Seeding 2 × 103 immunoselected cells/cm2 we were able to produce 2.5 × 108 ± 0.7 × 108 MSC from cultures with autologous serum enriched medium within 3 weeks. Neither haematopoietic nor endothelial cells were detectable even in the primary culture cell product. Expanded cells fulfilled both phenotypic and functional current criteria for MSC; they were CD29+, CD90+, CD73+, CD105+, CD45−; they suppressed allogeneic T-cell reaction in mixed lymphocyte cultures and retained in vitro differentiation potential. Moreover, comparative genomic hybridization analysis revealed chromosomal stability of the cultured MSC. Our data indicate that adequate numbers of pure MSC suitable for clinical applications can be generated within a short time using enriched BM-CD105+ cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.