The planning of new factories, as well as the re-planning of existing factories, has become more frequent due to increasingly changing business requirements, as for example shorter product life cycles and Industry 4.0. A higher number of involved planners and the resulting high amount of planning information strongly require coordination. In this context, the importance of Building Information Modeling (BIM) in factory planning rises as it provides a method of integrated building planning and planning validation by means of 3D software and object-oriented modelling. However, despite the use of BIM, there are still major interface problems in factory planning that cannot be solved by the still manual plausibility checks of non-geometrical planning information. To enable automatic checking of planning results, thereby improving the BIM-based factory planning process, machine-readable explication of the parametric dependencies are required between different planning fields such as production planning and building planning. The goal of this paper is to show parametric and thus non-geometric dependencies that exist between the sub-models of BIM-based factory planning in such a way that software agents can automatically evaluate this design information. Within the planning interface between production planning and building planning, the paper focusses on the particular exchange between the planning of the manufacturing system and the planning of a cutting fluid pump. With the involvement of domain experts from factory planning, systems engineering and production engineering, we as the authors have managed to develop a coherent system of block diagrams, constraint diagrams and parametric diagrams that explicate the focused interface in a machine-readable manner. We believe our accomplishments are an essential element for completely automated planning validation in BIM-based factory planning and general object-oriented modelling in the future.
High-pressure cutting fluid supply is a proven technology for chip breaking when turning difficult-to-cut materials, such as Inconel 718. However, the technology is usually not suitable for the finish turning of safety-critical parts in aero engines. The acting force of the cutting fluid jet on the back of the chip causes chip breaking. The broken chips are then accelerated by the cutting fluid jet towards the workpiece surfaces where they cause damage on impact. One approach to minimize surface damage is a specific increase in the chip length. The center of gravity of the chips with an adjusted length is shifted out of the focus where the cutting fluid jet hits the chips. Hence, the already finished surface is subjected to fewer impacts of the chips. In this study, the adjustment of the chip length by pulsating high-pressure cutting fluid supply to prevent surface damage was investigated. A valve unit was used to generate two alternating cutting fluid supply pressure levels in certain time intervals. During the low-pressure stage, the force of the cutting fluid jet does not lead to chip breakage and the chip length increases until the valves switch and the high-pressure stage is released. The focus of this work was the analysis of the relationship between the duration of the low-pressure and high-pressure time intervals and the chip length. Additionally, the influence of the depth of cut, the feed, and the cutting speed on the chip length during pulsating high-pressure cutting fluid supply was investigated. Finally, a case study was carried out to evaluate the effectiveness of the pulsating high-pressure cutting fluid supply technology. Therefore, the shoulder surface of a demonstrator part was finished by face turning. Following, the cylindrical surface was finished with a continuous and pulsating high-pressure cutting fluid supply with varied supply parameters. Microscopic analyses of the surface prove that the pulsating high-pressure cutting fluid supply prevents the surface from being damaged by the impacts of chips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.