Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three-dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.
BackgroundThe majority of cases with severe pulmonary alveolar proteinosis (PAP) are caused by auto-antibodies against GM-CSF. A multitude of genetic and exogenous causes are responsible for few other cases. Goal of this study was to determine the prevalence of GATA2 deficiency in children and adults with PAP and hematologic disorders.MethodsOf 21 patients with GM-CSF-autoantibody negative PAP, 13 had no other organ involvement and 8 had some form of hematologic disorder. The latter were sequenced for GATA2.ResultsAge at start of PAP ranged from 0.3 to 64 years, 4 patients were children. In half of the subjects GATA2-sequence variations were found, two of which were considered disease causing. Those two patients had the typical phenotype of GATA2 deficiency, one of whom additionally showed a previously undescribed feature – a cholesterol pneumonia. Hematologic disorders included chronic myeloic leukemia, juvenile myelo-monocytic leukemia, lymphoblastic leukemia, sideroblastic anemia and two cases of myelodysplastic syndrome (MDS). A 4 year old child with MDS and DiGeorge Syndrome Type 2 was rescued with repetitive whole lung lavages and her PAP was cured with heterologous stem cell transplant.ConclusionsIn children and adults with severe GM-CSF negative PAP a close cooperation between pneumologists and hemato-oncologists is needed to diagnose the underlying diseases, some of which are caused by mutations of transcription factor GATA2. Treatment with whole lung lavages as well as stem cell transplant may be successful.
Osteoblasts are adherent cells, and under physiological conditions they attach to both mineralized and non-mineralized osseous surfaces. However, how exactly osteoblasts respond to these different osseous surfaces is largely unknown. Our hypothesis was that the state of matrix mineralization provides a functional signal to osteoblasts. To assess the osteoblast response to mineralized compared to demineralized osseous surfaces, we developed and validated a novel tissue surface model. We demonstrated that with the exception of the absence of mineral, the mineralized and demineralized surfaces were similar in molecular composition as determined, for example, by collagen content and maturity. Subsequently, we used the human osteoblastic cell line MG63 in combination with genome-wide gene set enrichment analysis (GSEA) to record and compare the gene expression signatures on mineralized and demineralized surfaces. Assessment of the 5 most significant gene sets showed on mineralized surfaces an enrichment exclusively of genes sets linked to protein synthesis, while on the demineralized surfaces 3 of the 5 enriched gene sets were associated with the matrix. Focusing on these three gene sets, we observed not only the expected structural components of the bone matrix, but also gene products, such as HMCN1 or NID2, that are likely to act as temporal migration guides. Together, these findings suggest that in osteoblasts mineralized and demineralized osseous surfaces favor intracellular protein production and matrix formation, respectively. Further, they demonstrate that the mineralization state of bone independently controls gene expression in osteoblastic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.