The pervasive use of new mobile devices has allowed a better characterization in space and time of human concentrations and mobility in general. Besides its theoretical interest, describing mobility is of great importance for a number of practical applications ranging from the forecast of disease spreading to the design of new spaces in urban environments. While classical data sources, such as surveys or census, have a limited level of geographical resolution (e.g., districts, municipalities, counties are typically used) or are restricted to generic workdays or weekends, the data coming from mobile devices can be precisely located both in time and space. Most previous works have used a single data source to study human mobility patterns. Here we perform instead a cross-check analysis by comparing results obtained with data collected from three different sources: Twitter, census, and cell phones. The analysis is focused on the urban areas of Barcelona and Madrid, for which data of the three types is available. We assess the correlation between the datasets on different aspects: the spatial distribution of people concentration, the temporal evolution of people density, and the mobility patterns of individuals. Our results show that the three data sources are providing comparable information. Even though the representativeness of Twitter geolocated data is lower than that of mobile phone and census data, the correlations between the population density profiles and mobility patterns detected by the three datasets are close to one in a grid with cells of 2×2 and 1×1 square kilometers. This level of correlation supports the feasibility of interchanging the three data sources at the spatio-temporal scales considered.
Cities are characterized by concentrating population, economic activity and services. However, not all cities are equal and a natural hierarchy at local, regional or global scales spontaneously emerges. In this work, we introduce a method to quantify city influence using geolocated tweets to characterize human mobility. Rome and Paris appear consistently as the cities attracting most diverse visitors. The ratio between locals and non-local visitors turns out to be fundamental for a city to truly be global. Focusing only on urban residents' mobility flows, a city-to-city network can be constructed. This network allows us to analyse centrality measures at different scales. New York and London play a central role on the global scale, while urban rankings suffer substantial changes if the focus is set at a regional level.
Tourism is becoming a significant contributor to medium and long range travels in an increasingly globalized world. Leisure traveling has an important impact on the local and global economy as well as on the environment. The study of touristic trips is thus raising a considerable interest. In this work, we apply a method to assess the attractiveness of 20 of the most popular touristic sites worldwide using geolocated tweets as a proxy for human mobility. We first rank the touristic sites based on the spatial distribution of the visitors' place of residence. The Taj Mahal, the Pisa Tower and the Eiffel Tower appear consistently in the top 5 in these rankings. We then pass to a coarser scale and classify the travelers by country of residence. Touristic site's visiting figures are then studied by country of residence showing that the Eiffel Tower, Times Square and the London Tower welcome the majority of the visitors of each country. Finally, we build a network linking sites whenever a user has been detected in more than one site. This allow us to unveil relations between touristic sites and find which ones are more tightly interconnected.
The pervasiveness of mobile devices, which is increasing daily, is generating a vast amount of geo-located data allowing us to gain further insights into human behaviors. In particular, this new technology enables users to communicate through mobile social media applications, such as Twitter, anytime and anywhere. Thus, geo-located tweets offer the possibility to carry out in-depth studies on human mobility. In this paper, we study the use of Twitter in transportation by identifying tweets posted from roads and rails in Europe between September 2012 and November 2013. We compute the percentage of highway and railway segments covered by tweets in 39 countries. The coverages are very different from country to country and their variability can be partially explained by differences in Twitter penetration rates. Still, some of these differences might be related to cultural factors regarding mobility habits and interacting socially online. Analyzing particular road sectors, our results show a positive correlation between the number of tweets on the road and the Average Annual Daily Traffic on highways in France and in the UK. Transport modality can be studied with these data as well, for which we discover very heterogeneous usage patterns across the continent.
Monitoring migration flows is crucial to respond to humanitarian crisis and to design efficient policies. This information usually comes from surveys and border controls, but timely accessibility and methodological concerns reduce its usefulness. Here, we propose a method to detect migration flows worldwide using geolocated Twitter data. We focus on the migration crisis in Venezuela and show that the calculated flows are consistent with official statistics at country level. Our method is versatile and far-reaching, as it can be used to study different features of migration as preferred routes, settlement areas, mobility through several countries, spatial integration in cities, etc. It provides finer geographical and temporal resolutions, allowing the exploration of issues not contemplated in official records. It is our hope that these new sources of information can complement official ones, helping authorities and humanitarian organizations to better assess when and where to intervene on the ground.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.