Anemia in cancer patients is associated with reduced quality of life and local failure after radiation treatment. However, the use of erythropoietin to correct cancer anemia and to improve radiation efficacy was disappointing. Erythropoietin-receptor signaling mainly acts via activation of STAT 5, but also crossactivates the antiapoptotic transcription factor NF-jB. This causes neuroprotection against oxidative stress and implies radioprotection. In order to investigate possible radioprotective effects of erythropoietin-receptor signaling, we used an in vitro model system employing HeLa TetOff cells, stably transfected with an expression vector for the erythropoietin-receptor gene. Using electrophoretic mobility shift assays, we could demonstrate strong activation of NF-jB by erythropoietin-receptor signaling in HeLa cells. Activation of NF-jB did not require degradation of IjBa and was not prevented by proteasome inhibition. Furthermore, stimulation with erythropoietin resulted in a 50% increased clonogenicity of erythropoietin-receptor-expressing cells but did not alter radiation sensitivity itself. As most human tumors express erythropoietin receptor, we advocate a restricted use erythropoietin to patients suffering from erythropoietin-receptor-expressing cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.