Cleidocranial dysplasia (CCD), a dominantly inherited skeletal disease, is characterized by a variable phenotype ranging from dental alterations to severe skeletal defects. Either de novo or inherited mutations in the RUNX2 gene have been identified in most CCD patients. Transcription factor RUNX2, the osteogenic master gene, plays a central role in the commitment of mesenchymal stem cells to osteoblast lineage. With the aim to analyse the effects of RUNX2 mutations in CCD patients, we investigated RUNX2 gene expression and the osteogenic potential of two CCD patients’ cells. In addition, with the aim to better understand how RUNX2 mutations interfere with osteogenic differentiation, we performed string analyses to identify proteins interacting with RUNX2 and analysed p53 expression levels. Our findings demonstrated for the first time that, in addition to the alteration of downstream gene expression, RUNX2 mutations impair p53 expression affecting osteogenic maturation. In conclusion, the present work provides new insights into the role of RUNX2 mutations in CCD patients and suggests that an in-depth analysis of the RUNX2-associated gene network may contribute to better understand the complex molecular and phenotypic alterations in mutant subjects.
Background GNAS is a complex gene that encodes Gsα, a signaling protein that triggers a complex network of pathways. Heterozygous inactivating mutations in Gsα-coding GNAS exons cause hormonal resistance; on the contrary, activating mutations in Gsα result in constitutive cAMP stimulation. Recent research has described a clinical condition characterized by both gain and loss of Gsα function, due to a heterozygous de novo variant of the maternal GNAS allele. Patients and methods We describe a girl with a complex combination of clinical signs and a new heterozygous GNAS variant. For the molecular analysis of GNAS gene, DNA samples of the proband and her parents were extracted from their peripheral blood samples. In silico analysis was performed to predict the possible in vivo effect of the detected novel genetic variant. The activity of Gsα protein was in vitro analyzed from samples of erythrocyte membranes, recovered from heparinized blood samples. Results We found a new heterozygous missense c.166A > T—(p.Ile56Phe) GNAS variant in exon 2, inherited from the mother that determined a reduced activity of 50% of Gsα protein function. The analysis of her parents showed a 20–25% reduction in Gsα protein activity in the mother and a normal function in the father. Clinically our patient presented a multisystemic disorder characterized by hyponatremia compatible with a nephrogenic syndrome of inappropriate antidiuresis, subclinical hyperthyroidism, subclinical hypercortisolism, precocious thelarche and pubarche and congenital bone abnormalities. Conclusions This is the first time that the new variant c.166A > T (p.Ile56Phe) on exon 2 of GNAS gene, originated on maternal allele, has been described as probable cause of a multisystemic disorder. Although the mutation is associated with a reduced activity of the function of Gsα protein, this unusual phenotype on the contrary suggests a mild functional gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.