Plant organs originate from meristems where stem cells are maintained to produce continuously daughter cells that are the source of different cell types. The cell cycle switch gene CCS52A, a substrate specific activator of the anaphase promoting complex/ cyclosome (APC/C), controls the mitotic arrest and the transition of mitotic cycles to endoreduplication (ER) cycles as part of cell differentiation. Arabidopsis, unlike other organisms, contains 2 CCS52A isoforms. Here, we show that both of them are active and regulate meristem maintenance in the root tip, although through different mechanisms. The CCS52A1 activity in the elongation zone of the root stimulates ER and mitotic exit, and contributes to the border delineation between dividing and expanding cells. In contrast, CCS52A2 acts directly in the distal region of the root meristem to control identity of the quiescent center (QC) cells and stem cell maintenance. Cell proliferation assays in roots suggest that this control involves CCS52A2 mediated repression of mitotic activity in the QC cells. The data indicate that the CCS52A genes favor a low mitotic state in different cell types of the root tip that is required for meristem maintenance, and reveal a previously undescribed mechanism for APC/C mediated control in plant development.CDH1 ͉ cell differentiation ͉ endoreduplication ͉ quiescent center ͉ stem cells P lant growth and development depend on the persistent activity of meristems, allowing continuous postembryonic organogenesis. In the root tip, meristem maintenance is controlled by different mechanisms that involve the maintenance of stem cells in the root meristem (RM) and spatial control over mitotic exit at the RM-elongation zone (EZ) border.In the distal RM, stem cells are maintained in an undifferentiated state by the quiescent center (QC) cells (1). The QC represents a center of mitotic inactive cells resting in an extended G 1 phase (2). The stem cells around the QC divide according to strict spatial rules, and provide cell progenies that detach from the QC and differentiate into different root cell types (3). The auxin-PLETHORA (PLT) pathway provides positional information to set up the QC and surrounding stem cells whose activities depend on WOX5 and SHORT ROOT (SHR)-SCARECROW (SCR) transcription factors (4-7).As cells reach the RM-EZ border, they start to expand and terminally differentiate. Recently, it has been demonstrated that the spatial boundary of the RM and EZ is controlled by the rate of meristematic cell differentiation at this border (8). The transition involves exit from the mitotic cycle to the endocycle (9). In eukaryotes, endoreduplication (ER) onset requires inhibition of mitotic cyclin-dependent kinase (cdk) activities (10-12). This inhibition can be achieved by multiple mechanisms, but mostly by the degradation of mitotic cyclins by the anaphase promoting complex/cyclosome (APC/C) (13-15). The APC/C is an ubiquitin ligase that regulates cell cycle progression from metaphase to S phase by targeted degradation of numerous ce...
-Short-chain fatty acids (SCFAs), such as butyrate and propionate, are metabolic products of carbohydrate fermentation by the microbiota and constitute the main source of energy for host colonocytes. SCFAs are also important for gastrointestinal health, immunity, and host metabolism. Intestinally produced angiopoietin-like protein 4 (ANGPTL4) is a secreted protein with metabolism-altering properties and may offer a route by which microbiota can regulate host metabolism. Peroxisome proliferator-activated receptor (PPAR)-␥ has previously been shown to be involved in microbiota-induced expression of intestinal ANGPTL4, but the role of bacterial metabolites in this process has remained elusive. Here, we show that the SCFA butyrate regulates intestinal ANGPTL4 expression in a PPAR-␥-independent manner. Although PPAR-␥ is not required for butyrate-driven intestinal ANGPTL4 expression, costimulating with PPAR-␥ ligands and SCFAs leads to additive increases in ANGPTL4 levels. We suggest that PPAR-␥ and butyrate rely on two separate regulatory sites, a PPAR-responsive element downstream the transcription start site and a butyrate-responsive element(s) within the promoter region, 0.5 kb upstream of the transcription start site. Furthermore, butyrate gavage and colonization with Clostridium tyrobutyricum, a SCFA producer, can independently induce expression of intestinal ANGPTL4 in germ-free mice. Thus, oral administration of SCFA or use of SCFA-producing bacteria may be additional routes to maintain intestinal ANGPTL4 levels for preventive nutrition or therapeutic purposes.short-chain fatty acids; peroxisome proliferator-activated receptor-␥; fasting-induced adipose factor; angiopoietin-like protein 4; Clostridium tyrobutyricum THE HUMAN GASTROINTESTINAL (GI) tract has long been perceived as an organ with purely digestive functions. This perception has radically changed over the last decades as it emerged that the function of the GI tract is not only limited to energy uptake but also affects regulatory processes with wide-ranging systemic effects. These are either directly related to its digestive functions or independent ones impacting on local and systemic inflammation (reviewed in Ref. This crosstalk contributes among other things to the physiological state of the IEC including maturation and the integrity of the overall epithelial barrier (53). The importance of a well-regulated response to the intestinal microbiota and its metabolites has repeatedly been shown to be crucial to the health of the host (reviewed in Refs. 12 and 31).Mouse studies have also linked intestinal colonization to the capacity of energy utilization and weight gain (5, 6). One mechanism implied in this process is the regulation of angiopoietin-like protein 4 (ANGPTL4) expression in the intestinal epithelium. ANGPTL4 is a secreted protein with a variety of functions ranging from regulation of lipid and glucose homeostasis to inhibition of cell migration and angiogenesis (reviewed in Ref. 21). The NH 2 -terminal domain of ANGPTL4 inhibits lipoprote...
Background/AimThe human intestinal microbiota plays an important role in modulation of mucosal immune responses. To study interactions between intestinal epithelial cells (IECs) and commensal bacteria, a functional metagenomic approach was developed. One interest of metagenomics is to provide access to genomes of uncultured microbes. We aimed at identifying bacterial genes involved in regulation of NF-κB signaling in IECs. A high throughput cell-based screening assay allowing rapid detection of NF-κB modulation in IECs was established using the reporter-gene strategy to screen metagenomic libraries issued from the human intestinal microbiota.MethodsA plasmid containing the secreted alkaline phosphatase (SEAP) gene under the control of NF-κB binding elements was stably transfected in HT-29 cells. The reporter clone HT-29/kb-seap-25 was selected and characterized. Then, a first screening of a metagenomic library from Crohn's disease patients was performed to identify NF-κB modulating clones. Furthermore, genes potentially involved in the effect of one stimulatory metagenomic clone were determined by sequence analysis associated to mutagenesis by transposition.ResultsThe two proinflammatory cytokines, TNF-α and IL-1β, were able to activate the reporter system, translating the activation of the NF-κB signaling pathway and NF-κB inhibitors, BAY 11-7082, caffeic acid phenethyl ester and MG132 were efficient. A screening of 2640 metagenomic clones led to the identification of 171 modulating clones. Among them, one stimulatory metagenomic clone, 52B7, was further characterized. Sequence analysis revealed that its metagenomic DNA insert might belong to a new Bacteroides strain and we identified 2 loci encoding an ABC transport system and a putative lipoprotein potentially involved in 52B7 effect on NF-κB.ConclusionsWe have established a robust high throughput screening assay for metagenomic libraries derived from the human intestinal microbiota to study bacteria-driven NF-κB regulation. This opens a strategic path toward the identification of bacterial strains and molecular patterns presenting a potential therapeutic interest.
Nicotinate degradation has hitherto been elucidated only in bacteria. In the ascomycete Aspergillus nidulans, six loci, hxnS/AN9178 encoding the molybdenum cofactor-containing nicotinate hydroxylase, AN11197 encoding a Cys2/His2 zinc finger regulator HxnR, together with AN11196/hxnZ, AN11188/hxnY, AN11189/hxnP and AN9177/hxnT, are clustered and stringently co-induced by a nicotinate derivative and subject to nitrogen metabolite repression mediated by the GATA factor AreA. These genes are strictly co-regulated by HxnR. Within the hxnR gene, constitutive mutations map in two discrete regions. Aspergillus nidulans is capable of using nicotinate and its oxidation products 6-hydroxynicotinic acid and 2,5-dihydroxypyridine as sole nitrogen sources in an HxnR-dependent way. HxnS is highly similar to HxA, the canonical xanthine dehydrogenase (XDH), and has originated by gene duplication, preceding the origin of the Pezizomycotina. This cluster is conserved with some variations throughout the Aspergillaceae. Our results imply that a fungal pathway has arisen independently from bacterial ones. Significantly, the neo-functionalization of XDH into nicotinate hydroxylase has occurred independently from analogous events in bacteria. This work describes for the first time a gene cluster involved in nicotinate catabolism in a eukaryote and has relevance for the formation and evolution of co-regulated primary metabolic gene clusters and the microbial degradation of N-heterocyclic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.