Background: Lactic acid bacteria (LAB) exhibit a great biodiversity that can be exploited for different purposes, such as to enhance flavours or metabolize phenolic compounds. In the present study, the use of dairy and plant-derived LAB strains to perform cherry juice fermentation is reported. Methods: The growth ability of Lactobacillus plantarum, Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus was studied in cherry juice. Profiling of sugars, organic acids and volatile compounds was performed by GC-MS (Gas Chromatography-Mass Spectrometry), while the phenolic fraction was characterized using UHPLC (Ultra High Performance Liquid Chromatography) equipped with a linear ion trap-mass spectrometer. Results: Sucrose significantly decreased in all fermented samples as well as malic acid, converted to lactic acid by malolactic fermentation. The total amount of volatile compounds increased. Specifically, propyl acetate, an ester with fruit notes, reached the highest concentration in L. rhamnosus and L. paracasei (dairy strains) fermented juices. Phenolics were extensively metabolized: caffeic acid was converted into dihydrocaffeic acid, p-coumaric acid into 4-ethylphenol and phenyllactic acid was produced. Conclusion: Lactic acid fermentation confer fruit notes to the juice and enhance phenyllactic acids, especially employing dairy strains (L. rhamnosus and L. paracasei). The level of dihydrocaffeic acid, a compound with putative biological activity was also increased (in particular with L. plantarum).
Is there any still undisclosed biodiversity in Ciauscolo salami? A new glance into the microbiota of an artisan production as revealed by high-throughput sequencing, Meat Science (2020),
Background: One of the main objectives of the food industry is the shelf life extension of food products, taking into account the safety requirements and the preference of consumers attracted by a simple and clear label. Following this direction, many researchers look to find out antimicrobials from natural sources. Methods: Tomato, carrot, and melon by-products were used as substrates for lactic acid fermentation using seven strains belonging to the Lactobacillus genus, L. plantarum, L. casei, L. paracasei, and L. rhamnosus. The obtained fermented by-products were then extracted and the antimicrobial activity toward fourteen pathogenic strains of Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus Aureus, and Bacillus cereus was tested through agar well diffusion assay. Results: All the extracts obtained after fermentation had highlighted antimicrobial activity against each pathogen tested. In particular, a more effective activity was observed against Salmonella spp., L. monocytogenes, S. aureus, and B. cereus, while a lower activity was observed against E. coli. Conclusion: Lactic acid fermentation of vegetable by-products can be a good strategy to obtain antimicrobials useful in food biopreservation.
The quality of sourdough bread mainly depends on metabolic activities of lactic acid bacteria (LAB). The exopolysaccharides (EPS) produced by LAB affect positively the technological and nutritional properties of the bread, while phytases improve the bioavailability of the minerals by reducing its phytate content. In the present study, a pool of 152 cereal-sourced LAB were screened for production of phytases and EPS for potential use as sourdough starter cultures for the baking industry. There was large heterogeneity in the phytase activity observed among the screened isolates, with 95% showing the ability to degrade sodium phytate on plates containing Sourdough Simulation Medium (SSM). The isolates Lactobacillus brevis LD65 and Lactobacillus plantarum PB241 showed the highest enzymatic activity, while the isolates ascribed to Weissella confusa were characterized by low or no phytase activity. Only 18% of the screened LAB produced EPS, which were distinguished as ropy or mucoid phenotypes on SSM supplemented with sucrose. Almost all the EPS producers carried one or more genes (epsD/E and/or epsA) involved in the production of heteropolysaccharides (HePS), whereas the isolates ascribed to Leuconostoc citreum and W. confusa carried genes involved in the production of both HePS and homopolysaccharides (HoPS). Monosaccharide composition analysis of the EPS produced by a selected subset of isolates revealed that all the HePS included glucose, mannose, and galactose, though at different ratios. Furthermore, a few isolates ascribed to L. citreum and W. confusa and carrying the gtf gene produced β-glucans after fermentation in an ad hoc formulated barley flour medium. Based on the overall results collected, a subset of candidate sourdough starter cultures for the baking industry was selected, including Lb. brevis LD66 and L. citreum PB220, which showed high phytase activity and positive EPS production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.