Surface chemical functionalization is used in analytical tools to immobilize biomolecules that will capture a specific analyte and also to reduce the nonspecific adsorption. Silane monolayers are widely used to functionalize silica surfaces. Their interfacial properties are linked to the silane organization. Here, we study, by molecular dynamics simulations, the effects of silane molecule headgroup charge, alkyl chain length, and surface coverage on the structure of silane monolayers. Four molecules are investigated: 3aminopropyldimethylethoxysilane, n-propyldimethylmethoxysilane, octadecyldimethylmethoxysilane, and tert-butyl-11-(dimethylamino-(dimethyl)silyl)undecanoate. The results suggest that, while long alkyl chains straighten out and adopt a more organized structure as surface coverage increases, the tilt angle of short chains is independent of surface coverage. Furthermore, in the case of long alkyl chains, a charged head-group seems to reduce the tilt angle to surface coverage dependence. The simulated alkyl chain tilt angles were qualitatively validated by infrared spectroscopy and X-ray photoelectron spectroscopy. Also, a hexagonal packing is observed in all of the monolayers but is more defined as surface coverage increases. The nematic order parameter suggests that this packing is governed by the parallel orientation of the first C−C bonds near the surface. So, even short alkyl chains, with a large tilt angle distribution, present a hexagonal packing.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.