Continuous autonomous measurement of total dissolved inorganic carbon (TCO2) in the oceans is critical for climate change modelling and ocean acidification measurement. A microfluidic conductivity-based approach will permit integration of miniaturised chemical analysis systems into Argo ocean floats, for long-term, high-accuracy depth profiling of dissolved CO2 with minimal reagent payload. Precise metering, suitable for sample acidification and CO2 liberation, is addressed. Laser etched microfluidic snake channel restrictors and asymmetric Y-meters were fabricated, with channel dimensions down to ∼75 μm, to adjust metering ratios between seawater and acid simulants. Hydrodynamic resistances, from flow versus pressure measurements, were compared with finite element simulations for various cross-section profiles and areas. Microfluidic metering circuits were constructed from various resistance snake channels and Y-junction components. Sample to acid volume ratios (meter ratio) up to 100:1 have been achieved with 300 μm wide snake channels for lengths >m. At highest resolution, the footprint would be >600 mm2. Circuits based solely on asymmetric Y-junctions gave maximum meter ratios of 16:1 with a footprint of <40 mm2 and ∼0.2% precision. Further refinement is required to ensure the integrity of such small channels in integration of metering units into full TCO2 analysis microfluidic circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.