Optimal batch plant design is a recurrent issue in Process Engineering, which can be formulated as a Mixed Integer Non-Linear Programming (MINLP) optimisation problem involving specific constraints, which can be, typically, the respect of a time horizon for the synthesis of various products. Genetic Algorithms constitute a common option for the solution of these problems, but their basic operating mode is not always wellsuited to any kind of constraint treatment: if those cannot be integrated in variable encoding or accounted for through adapted genetic operators, their handling turns to be a thorny issue. The point of this study is thus to test a few constraint handling techniques on a mid-size example in order to determine which one is the best fitted, in the framework of one particular problem formulation. The investigated methods are the elimination of infeasible individuals, the use of a penalty term added in the minimized criterion, the relaxation of the discrete variables upper bounds, dominancebased tournaments and, finally, a multiobjective strategy. The numerical computations, analysed in terms of result quality and of computational time, show the superiority of elimination technique for the former criterion only when the latter one does not become a bottleneck. Besides, when the problem complexity makes the random location of feasible space too difficult, a single tournament technique proves to be the most efficient one.
Due to their large variety of applications, complex optimisation problems induced a great effort to develop efficient solution techniques, dealing with both continuous and discrete variables involved in non-linear functions. But among the diversity of those optimisation methods, the choice of the relevant technique for the treatment of a given problem keeps being a thorny issue. Within the Process Engineering context, batch plant design problems provide a good framework to test the performances of various optimisation methods : on the one hand, two Mathematical Programming techniques-DICOPT++ and SBB, implemented in the GAMS environment-and, on the other hand, one stochastic method, i.e. a genetic algorithm. Seven examples, showing an increasing complexity, were solved with these three techniques. The result comparison enables to evaluate their efficiency in order to highlight the most appropriate method for a given problem instance. It was proved that the best performing method is SBB, even if the GA also provides interesting solutions, in terms of quality as well as of computational time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.