This paper presents a novel automatic face recognition approach based on local binary patterns. This descriptor considers a local neighbourhood of a pixel to compute the feature vector values. This method is not very robust to handle image noise, variances and different illumination conditions. We address these issues by proposing a novel descriptor which considers more pixels and different neighbourhoods to compute the feature vector values. The proposed method is evaluated on two benchmark corpora, namely UFI and FERET face datasets. We experimentally show that our approach outperforms state-ofthe-art methods and is efficient particularly in the real conditions where the above mentioned issues are obvious. We further show that the proposed method handles well one training sample issue and is also robust to the image resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.