The causes of multiple sclerosis and amyotrophic lateral sclerosis have long remained elusive. A new category of pathogenic components, normally dormant within human genomes, has been identified: human endogenous retroviruses (HERVs). These represent ∼8% of the human genome, and environmental factors have reproducibly been shown to trigger their expression. The resulting production of envelope (Env) proteins from HERV-W and HERV-K appears to engage pathophysiological pathways leading to the pathognomonic features of MS and ALS, respectively. Pathogenic HERV elements may thus provide a missing link in understanding these complex diseases. Moreover, their neutralization may represent a promising strategy to establish novel and more powerful therapeutic approaches.
BackgroundProposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous retroviruses.Methodology/Principal FindingsIn search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350), was studied on peripheral blood mononuclear cells (PBMC) from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines.Conclusions/Significance In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as initial trigger of future MS, years later, and HERV-W/MSRV/syncytin-1 as actual contributor to MS pathogenicity, in striking parallelism with disease behaviour.
Multiple sclerosis (MS)-associated retrovirus (MSRV)/HERV-W (human endogenous retrovirus W)and Human herpesvirus 6 (HHV-6) are the two most studied (and discussed) viruses as environmental co-factors that trigger MS immunopathological phenomena. Autopsied brain tissues from MS patients and controls and peripheral blood mononuclear cells (PBMCs) were analysed. Quantitative RT-PCR and PCR with primers specific for MSRV/HERV-W env and pol and HHV-6 U94/rep and DNA-pol were used to determine virus copy numbers. Brain sections were immunostained with HERV-W env-specific monoclonal antibody to detect the viral protein. All brains expressed MSRV/HERV-W env and pol genes. Phylogenetic analysis indicated that cerebral MSRV/HERV-W-related env sequences, plasmatic MSRV, HERV-W and ERVWE1 (syncytin) are related closely. Accumulation of MSRV/HERV-W-specific RNAs was significantly greater in MS brains than in controls (P=0.014 vs healthy controls; P=0.006 vs pathological controls). By immunohistochemistry, no HERV-W env protein was detected in control brains, whereas it was upregulated within MS plaques and correlated with the extent of active demyelination and inflammation. No HHV-6-specific RNAs were detected in brains of MS patients; one healthy control had latent HHV-6 and one pathological control had replicating HHV-6. At the PBMC level, all MS patients expressed MSRV/HERV-W env at higher copy numbers than did controls (P=0.00003). Similar HHV-6 presence was found in MS patients and healthy individuals; only one MS patient had replicating HHV-6. This report, the first to study both MSRV/HERV-W and HHV-6, indicates that MSRV/HERV-W is expressed actively in human brain and activated strongly in MS patients, whilst there are no significant differences between these MS patients and controls for HHV-6 presence/replication at the brain or PBMC level. INTRODUCTIONThe aetiopathogenesis of multiple sclerosis (MS) disease is complex and debated. Immunopathogenic phenomena are thought to be triggered by environmental (viral?) factors operating on a predisposing genetic background (Noseworthy et al., 2000). Among the viruses suggested as MS co-factors are ubiquitous members of the family Herpesviridae, Human herpesvirus 6 (HHV-6) (AlvarezLafuente et al., 2004;Moore & Wolfson, 2002) and Epstein-Barr virus (EBV) (Christensen, 2006), and a human endogenous retrovirus (HERV), the MS-associated retrovirus (MSRV) (Dolei, 2005;Perron et al., 1989), a member of the HERV-W multicopy family; links between HERVs and some human diseases have been observed increasingly (Dolei, 2006). HHV-6 can be neurotropic, can become latent and be reactivated, and has potential immunopathogenic properties. Meta-analyses indicate that the available reports provide some support for a link between HHV-6 and MS, but none shows causative relationships (Clark, 2004;Moore & Wolfson, 2002 Firouzi et al., 2003). Activities strikingly concordant with findings on MSRV and MS (Dolei et al., 2002;Firouzi et al., 2003;Lafon et al., 2002;Perron et al., 2005; Sotgiu et al., ...
This mini-review summarizes current knowledge of MSRV (multiple sclerosis-associated retrovirus), founder member of the type W family of human endogenous retroviruses (HERVs), its pathogenic potential and association with diseases. As retrotransposable elements, HERVs behave differently from stable genes, and cannot be studied with "Mendelian genetics" concepts only. They also display complex interactions with other HERV families, and with classical viruses. These concepts may contribute to unravelling the etiopathogenesis of complex diseases such as multiple sclerosis, schizophrenia, and other chronic multifactorial diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.