Aggregation of metal dendrimers made of Ru(II) and Os(II) polypyridine photoactive subunits occurs in solution, as shown by SAXS experiments. Aggregation-induced energy transfer takes place, suggesting inter-dendrimer energy migration, a process resembling an important property of the natural systems and one that can inspire interesting developments for artificial photosynthesis.
Photoluminescence of silicon nanocrystals (SiNCs) in the presence of a series of quinone electron acceptors and ferrocene electron donors is quenched by oxidative and reductive electron transfer dynamic processes, respectively. The rate of these processes is investigated as a function of (a) the thermodynamic driving force of the reaction, by changing the reduction potentials of the acceptor or donor molecules, (b) the dimension of SiNCs (diameter = 3.2 or 5.0 nm), (c) the surface capping layer on SiNCs (dodecyl or ethylbenzene groups), and (d) the solvent polarity (toluene vs dichloromethane). The results were interpreted within the classical Marcus theory, enabling us to estimate the position of the valence and conduction bands, as well as the reorganization energy (particularly small, as expected for quantum dots) and electronic transmission coefficients. The last parameter is in the range 10 −5 −10 −6 , demonstrating the nonadiabaticity of the process, and it decreases upon increasing the SiNC dimensions: this result is in line with a larger number of excitons generated in the inner silicon core for larger SiNCs and thus resulting in a lower electronic coupling with the quencher molecules.
A series of linearly arranged donor-spacer-acceptor (D-S-A) systems 1-3, has been prepared and characterized. These dyads combine an Os(II)bis(terpyridine) unit as the photoactivable electron donor (D), a biphenylene (2) or phenylene-xylylene (3) fragment as the spacer (S), and a N-aryl-2,6-diphenylpyridinium electrophore (with aryl = 4-pyridyl or 4-pyridylium in 1 or 2/3, respectively) as the acceptor (A). Their absorption spectra, redox behavior, and luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution) have been studied. The electronic structure and spectroscopic properties of a representative compound of the series (i.e., 2) have also been investigated at the theoretical level, performing Density Functional Theory (DFT)-based calculations. Time-dependent transient absorption spectra of 1-3 have also been recorded at room temperature. The results indicate that efficient photoinduced oxidative electron transfer takes place in the D-S-A systems at room temperature in fluid solution, for which rate constants (in the range 4 × 10(8)-2 × 10(10) s(-1)) depend on the driving force of the process and the spacer nature. In all the D-S-A systems, charge recombination is faster than photoinduced charge separation, in spite of the relatively large energy of the D(+)-S-A(-) charge-separated states (between 1.47 and 1.78 eV for the various species), which would suggest that the charge recombination occurs in the Marcus inverted region. Considerations based on superexchange mechanism suggest that the reason for the fast charge recombination is the presence of a virtual D-S(+)-A(-) state at low energy--because of the involvement of the easily oxidizable biphenylene spacer--which is beneficial for charge recombination via superexchange but unsuitable for photoinduced charge separation. To further support the above statement, we prepared a fourth D-S-A species, 4, analogous to 2 but with a (hardly oxidizable) single phenylene fragment serving as the spacer. For such a species, charge recombination (about 3 × 10(10) s(-1)) is slower than photoinduced charge separation (about 1 × 10(11) s(-1)), thereby confirming our suggestions.
The synthesis, characterization, redox behavior, and photophysical properties (both at room temperature in fluid solution and at 77 K in rigid matrix) of a series of four new molecular dyads (2-5) containing Ru(II)- or Os(II)-bis(terpyridine) subunits as chromophores and various expanded pyridinium subunits as electron acceptors are reported, along with the reference properties of a formerly reported dyad, 1. The molecular dyads 2-4 have been designed to have their (potentially emissive) triplet metal-to-ligand charge-transfer (MLCT) and charge-separated (CS) states close in energy, so that excited-state equilibration between these levels can take place. Such a situation is not shared by limit cases 1 and 5. For dyad 1, forward photoinduced electron transfer (time constant, 7 ps) and subsequent charge recombination (time constant, 45 ps) are evidenced, while for dyad 5, photoinduced electron transfer is thermodynamically forbidden so that MLCT decays are the only active deactivation processes. As regards 2-4, CS states are formed from MLCT states with time constants of a few dozens of picoseconds. However, for these latter species, such experimental time constants are not due to photoinduced charge separation but are related to the excited-state equilibration times. Comparative analysis of time constants for charge recombination from the CS states based on proper thermodynamic and kinetic models highlighted that, in spite of their apparently affiliated structures, dyads 1-4 do not constitute a homologous series of compounds as far as intercomponent electron transfer processes are concerned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.