This paper presents the design and fabrication of a broadband microstrip attenuator, operating at 1-20 GHz, based on few layer graphene flakes. The RF performance of the attenuator has been analyzed in depth. In particular, the use of graphene as a variable resistor is discussed and experimentally characterized at microwave frequencies. The structure of the graphene-based attenuator integrates a micrometric layer of graphene flakes deposited on an air gap in a microstrip line. As highlighted in the experiments, the graphene film can range from being a discrete conductor to a highly resistive material, depending on the externally applied voltage. As experimental evidence, it is verified that the application of a proper voltage through two bias tees changes the surface resistivity of graphene, and induces a significant change of insertion loss of the microstrip attenuator.
International audienceA comprehensive analysis of electrical, electromagnetic (EM), mechanical, and thermal properties of epoxy resin composites filled with 0.25-2.0wt. % of carbon additives characterized by high surface area, both nano-sized, like carbon nanotubes (CNTs) and carbon black (CBH), and micro-sized exfoliated graphite (EG), was performed. We found that the physical properties of both CNTs- and CBH-based epoxy resin composites increased all together with filler content and even more clearly for CBH than for CNTs. In the case of EG-based composites, good correlation between properties and filler amount was observed for concentrations below 1.5 wt. %. We conclude that CBH and, to a lower extent, EG could replace expensive CNTs for producing effective EM materials in microwave and low-frequency ranges, which are, in addition, mechanically and thermally stable
.pl , Phone: þ48 22 822 02 11, Fax: þ48 22 822 59 96Nanocomposites are nowadays one of the most promising materials. Among different fillers, e.g. carbon nanotubes and silicon carbide nanowires (NWSiC), already used with epoxy resin matrices, graphene exfoliated graphite (EG) and graphene nanoplates have some characteristics that make them unique for electromagnetic shielding materials. However, there is still an unresolved problem of proper dispersion that will ensure the homogeneity of samples. To overcome this drawback, inorganic fibres were proposed. An amount of 0.25 phr (parts per hundred; filler content presented as wt.% of the whole polymeric matrix) NWSiC, added to the EG 1 phr/epoxy resin sample, efficiently prevents filler agglomeration. NWSiC were obtained in combustion synthesis and EG was produced from intercalated graphite using microwaves. Finally, nanocomposites with EG from self-propagating high-temperature synthesis were also tested. The properties of the samples have been characterized, revealing an observable improvement of pure resin features.Raw products of combustion synthesis of Si/polytetra-fluoroethylene (PTFE) stoichiometric mixture, carried out in the larger of the presented reactors.
The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity), and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs) was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg·m-3) the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.