1,3-Dipolar cycloaddition reactions can be considered a powerful synthetic tool in the building of heterocyclic rings, with applications in different fields. In this review we focus on the synthesis of biologically active compounds possessing the 1,2,3-triazole core through 1,3-dipolar cycloaddition reactions. The 1,2,3-triazole skeleton can be present as a single disubstituted ring, as a linker between two molecules, or embedded in a polyheterocycle. The cycloaddition reactions are usually catalysed by copper or ruthenium. Domino reactions can be achieved through dipolarophile anion formation, generally followed by cyclisation. The variety of attainable heterocyclic structures gives an illustration of the importance of the 1,2,3-triazole core in medicinal chemistry
Molecular dynamics simulations and quantum mechanics/molecular mechanics calculations provided a mechanism for G-quadruplex binding of three transition metal complexes.
A phenomenological study of solubility has been conducted using a combination of quantitative structureproperty relationship (QSPR) and principal component analysis (PCA). A solubility database of 4540 experimental data points was used that utilized available experimental data into a matrix of 154 solvents times 397 solutes. Methodology in which QSPR and PCA are combined was developed to predict the missing values and to fill the data matrix. PCA on the resulting filled matrix, where solutes are observations and solvents are variables, shows 92.55% of coverage with three principal components. The corresponding transposed matrix, in which solvents are observations and solutes are variables, showed 62.96% of coverage with four principal components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.