Osmoporation is an innovative method that can be used with food-grade yeast cells of Saccharomyces cerevisiae as natural encapsulating matrices. This technique overcomes barriers that difficult encapsulation and enables the internalization of fragile bioactive molecules such as fisetin into yeasts. In the present study, we assessed the effects of concentration, osmotic pressure, and temperature on the encapsulation efficiency (EE) and internalized fisetin content (IF). Two different quantification strategies were investigated: direct extraction (DE) without cell washing or freeze-drying steps and indirect extraction (IE) performed after washings with ethanol and freeze-drying. Our results showed that osmoporation improved EE (33 %) and IF (1.199 mg). The best experimental conditions were found by using DE. High-resolution images showed that the yeast cell envelope was preserved during osmoporation at 30 MPa and 84 % of yeast cells remained viable after treatment. Washing cells with organic solvent led to decreased EE (0.65 %) and IF (0.023 mg). This was probably due to either damages caused to yeast cell envelope or fisetin dragged out of cell. Overall, the results demonstrated the adequacy and relevant biotechnological potential of yeasts as encapsulating matrices for hydrophobic compounds. This fresh biotechnological approach has proven to be a promising tool for the production of bioactive-rich food products.
During industrial yeast production, cells are often subjected to deleterious hydric variations during dehydration, which reduces their viability and cellular activity. This study is focused on the yeast Lachancea thermotolerans, particularly sensitive to dehydration. The aim was to understand the modifications of single-cells biophysical profiles during different dehydration conditions. Infrared spectra of individual cells were acquired before and after dehydration kinetics using synchrotron radiation-based Fourier-transform infrared (S-FTIR) microspectroscopy. The cells were previously stained with fluorescent probes in order to measure only viable and active cells prior to dehydration. In parallel, cell viability was determined using flow cytometry under identical conditions. The S-FTIR analysis indicated that cells with the lowest viability showed signs of membrane rigidification and modifications in the amide I (α-helix and β-sheet) and amide II, which are indicators of secondary protein structure conformation and degradation or disorder. Shift of symmetric C-H stretching vibration of the CH 2 group upon a higher wavenumber correlated with better cell viability, suggesting a role of plasma membrane fluidity. This was the first time that the biophysical responses of L. thermotolerans single-cells to dehydration were explored with S-FTIR. These findings are important for clarifying the mechanisms of microbial resistance to stress in order to improve the viability of sensitive yeasts during dehydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.