Quantum dots (QDs) are semiconductor nanoparticles with very interesting optical properties, like high quantum yield or narrow and size-tuneable fluorescence spectra. Current applications of QDs are widespread, their use as fluorescence labels in bioassays being one of the most promising. These nanoparticles are usually conjugated to highly specific biomolecules like antibodies, oligonucleotides, enzymes or aptamers to improve assay selectivity. In this review, QD surface passivation, conjugation to biomolecules, and purification strategies are discussed with special emphasis to the development of QD-based immunoassays for the detection of low molecular weight compounds given the relevance of this sort of analytes in health, food safety, pharmaceutical, or environmental monitoring areas. The aim of this review is to summarise the main achievements attained so far and to initialise researchers in the field of antibody-based assays employing QDs as labels, such as fluorescence-linked immunosorbent assay (FLISA), fluorescence (or Förster) resonance energy transfer (FRET), immunochromatographic methods, and immunosensors.
Strobilurin fungicides are nowadays among the most important fungicides in the market of active agrochemicals. Pyraclostrobin, which belongs to the last generation of this family of molecules, shows a broader antifungal activity spectrum and higher efficiency and security profiles than previous fungicides. This paper describes the synthesis of functionalized haptens, the production of monoclonal antibodies, and the development of enzyme-linked immunosorbent assays (ELISA) for the detection of pyraclostrobin. A conformational analysis of hapten structure was performed, which provided relevant data concerning the length of the spacer arm. A very useful strategy has been followed for the screening of hybridomas, leading to the selection of a panel of high-affinity monoclonal antibodies to pyraclostrobin. Moreover, different immunoassays have been characterized using the conjugate-coated indirect ELISA format, and limits of detection below 0.1 microg/L have been obtained. Also, a simplified one-step procedure has been carried out with two indirect assays. Finally, these results have been compared with the performance of the same antibodies in the antibody-coated direct ELISA format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.