Salmonella infection is a globally important cause of gastroenteritis and systemic disease, and is a useful tool to study immune responses in the intestine. Although mechanisms leading to immune responses against Salmonella have been extensively studied, questions remain about how bacteria travel from the intestinal mucosa to the mesenteric lymph nodes (MLN), a key site for antigen presentation. Here, we used a mouse model of infection with Salmonella enterica serovar Typhimurium (STM) to identify changes in intestinal immune cells induced during early infection. We then used fluorescently-labelled STM to identify interactions with immune cells, from the site of infection, through migration in lymph, to the MLN. We show that viable STM can be carried in the lymph by any subset of migrating dendritic cells, but not by macrophages. Moreover, approximately half of the STM in lymph are not associated with cells at all, and travel autonomously. Within the MLN, STM associates with dendritic cells and B cells, but predominantly with MLN-resident macrophages. In conclusion, we describe the routes used by STM to spread systemically in the period immediately after infection. This deeper understanding of the infection process could open new avenues for controlling it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.