Banana, papaya and pineapple are the most consumed tropical fruits in the world, being Brazil one of the main producers. Fungi Colletotrichum musae, Colletotrichum gloeosporioides and Fusarium subglutinans f.sp. ananas cause severe post harvest diseases and losses in fruits quality. The aim of this work was to evaluate the effectiveness of five monoterpenes to inhibit the mycelial growth and conidia germination of these three phytopathogens. The monoterpenes citral, citronellal, L-carvone, isopullegol and α-pinene were diluted in ethanol to final concentrations from 0.2 to 1%. All monoterpenes were found to inhibit the growth of the three studies fungi in a dose-dependent manner. Citral was the most effective of the oils tested and showed potent fungicidal activity at concentrations above 0.5%. Also, in vivo evaluation with these tropical fruits demonstrated the efficiency of citral to inhibit fungal growth. These results indicate the potential use of citral as a natural pesticide control of post-harvest fruit diseases.
Coconut palm (Cocos nucifera) is an important commercial crop in many tropical countries, but its industry generates large amounts of residue. One way to address this problem is to use this residue, coconut husk, to produce second-generation (2G) ethanol. The aim of this review is to describe the methods that have been used to produce bioethanol from coconut husk and to suggest ways to improve different steps of the process. The analysis performed in this review determined that alkaline pretreatment is the best choice for its delignification potential. It was also observed that although most reported studies use enzymes to perform hydrolysis, acid hydrolysis is a good alternative. Finally, ethanol production using different microorganisms and fermentation strategies is discussed and the possibility of obtaining other added-value products from coconut husk components by using a biorefinery scheme is addressed.
The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed.
Cocos nucifera L., coconut, is a palm of high importance in the food industry, but a considerable part of the biomass is inedible. In this study, the pretreatment and saccharification parameters NaOH solution, pretreatment duration and enzyme load were evaluated for the production of hydrolysates from green coconut mesocarp using 18% (w/v) total solids (TS). Hydrolysates were not detoxified in order to preserve sugars solubilized during the pretreatment. Reduction of enzyme load from 15 to 7.5 filter paper cellulase unit (FPU)/g of biomass has little effect on the final ethanol titer. With optimized pretreatment and saccharification, hydrolysates with more than 7% (w/v) sugars were produced in 48h. Fermentation of the hydrolysate using industrial Saccharomyces cerevisiae strains produced 3.73% (v/v) ethanol. Our results showed a simple pretreatment condition with a high-solid load of biomass followed by saccharification and fermentation of undetoxified coconut mesocarp hydrolysates to produce ethanol with high titer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.