Identifying floodplain boundaries is of paramount importance for earth, environmental and socioeconomic studies addressing riverine risk and resource management. However, to date, a global floodplain delineation using a homogeneous procedure has not been constructed. In this paper, we present the first, comprehensive, high-resolution, gridded dataset of Earth’s floodplains at 250-m resolution (GFPLAIN250m). We use the Shuttle Radar Topography Mission (SRTM) digital terrain model and set of terrain analysis procedures for geomorphic floodplain delineations. The elevation data are processed by a fast geospatial tool for floodplain mapping available for download at https://github.com/fnardi/GFPLAIN. The GFPLAIN250m dataset can support many applications, including flood hazard mapping, habitat restoration, development studies, and the analysis of human-flood interactions. To test the GFPLAIN250m dataset, we perform a consistency analysis with floodplain delineations derived by flood hazard modelling studies in Europe.
Devastating floods are observed every year globally from upstream mountainous to coastal regions. Increasing flood frequency and impacts affect both major rivers and their tributaries. Nonetheless, at the small-scale, the lack of distributed topographic and hydrologic data determines tributaries to be often missing in inundation modeling and mapping studies. Advances in Unmanned Aerial Vehicle (UAV) technologies and Digital Elevation Models (DEM)-based hydrologic modeling can address this crucial knowledge gap. UAVs provide very high resolution and accurate DEMs with low surveying cost and time, as compared to DEMs obtained by Light Detection and Ranging (LiDAR), satellite, or GPS field campaigns. In this work, we selected a LiDAR DEM as a benchmark for comparing the performances of a UAV and a nation-scale high-resolution DEM (TINITALY) in representing floodplain topography for flood simulations. The different DEMs were processed to provide inputs to a hydrologic-hydraulic modeling chain, including the DEM-based EBA4SUB (Event-Based Approach for Small and Ungauged Basins) hydrologic modeling framework for design hydrograph estimation in ungauged basins; the 2D hydraulic model FLO-2D for flood wave routing and hazard mapping. The results of this research provided quantitative analyses, demonstrating the consistent performances of the UAV-derived DEM in supporting affordable distributed flood extension and depth simulations.
Hydrogeomorphic approaches for floodplain modelling are valuable tools for water resource and flood hazard management and mapping, especially as the global availability and accuracy of terrain data increases. Digital terrain models implicitly contain information about floodplain landscape morphology that was produced by hydrologic processes over long time periods, as well as recent anthropogenic modifications to floodplain features and processes. The increased availability of terrain data and distributed hydrologic datasets provide an opportunity to develop hydrogeomorphic floodplain delineation models that can quickly be applied at large spatial scales. This research investigates the performance of a hydrogeomorphic floodplain model in two large urbanized and gauged river basins in the United States, the Susquehanna and the Wabash basins. The models were calibrated by a hydrologic data scaling technique, implemented through regression analyses of USGS peak flow data to estimate floodplain flow levels across multiple spatial scales. Floodplain model performance was assessed through comparison with 100-year Federal Emergency Management Agency flood hazard maps. Results show that the hydrogeomorphic floodplain maps are generally consistent with standard flood maps, even when significantly and systematically varying scaling parameters within physically feasible ranges, with major differences that are likely due to infrastructure (levees, bridges, etc.) in highly urbanized areas and other locations where the geomorphic signature of fluvial processes has been altered. This study demonstrates the value of geomorphic information for large-scale floodplain mapping and the potential use of hydrogeomorphic models for evaluating human-made impacts to floodplain ecosystems and patterns of disconnectivity in urbanized catchments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.