The formation of extracellular aggregates built up by deposits of β-amyloid (Aβ) is a hallmark of Alzheimer's disease (AD). Curcumin has been reported to display anti-amyloidogenic activity, not only by inhibiting the formation of new Aβ aggregates, but also by disaggregating existing ones. However, the uptake of Curcumin into the brain is severely restricted by its low ability to cross the blood-brain barrier (BBB). Therefore, novel strategies for a targeted delivery of Curcumin into the brain are highly desired. Here, we encapsulated Curcumin as active ingredient in PLGA (polylactide-co-glycolic-acid) nanoparticles (NPs), modified with g7 ligand for BBB crossing. We performed in depth analyses of possible toxicity of these NPs, uptake, and, foremost, their ability to influence Aβ pathology in vitro using primary hippocampal cell cultures. Our results show no apparent toxicity of the formulated NPs, but a significant decrease of Aβ aggregates in response to Curcumin loaded NPs. We thus conclude that brain delivery of Curcumin using BBB crossing NPs is a promising future approach in the treatment of AD.
It has been recently reported that graphene is able to significantly reduce the friction coefficient of steel-on-steel sliding contacts. The microscopic origin of this behavior has been attributed to the mechanical action of load carrying capacity. However, a recent work highlighted the importance of the chemical action of graphene. According to this work graphene reduces the adhesion of iron interfaces by reducing the surface energy thanks to a passivation effect. The aim of the present work is to clarify the still debated lubricating behavior of graphene flakes. We perform pin-on-disc experiments using liquid dispersed graphene solution as a lubricant. Two different materials, pure iron and bronze are tested against 100Cr6 steel. Raman spectroscopy is used to analyze the surfaces after the friction tests. The results of these tests prove that graphene flakes have a beneficial effect on the friction coefficient. At the same time they show a tendency of graphene to passivate the native iron surfaces that are exposed during sliding as a consequence of wear
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.