Objective This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID‐19) in people with multiple sclerosis (PwMS). Methods We retrospectively collected data of PwMS with suspected or confirmed COVID‐19. All the patients had complete follow‐up to death or recovery. Severe COVID‐19 was defined by a 3‐level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID‐19 by multivariate and propensity score (PS)‐weighted ordinal logistic models. Sensitivity analyses were run to confirm the results. Results Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID‐19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty‐eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti‐CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18–4.74, p = 0.015) with increased risk of severe COVID‐19. Recent use (<1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20–12.53, p = 0.001). Results were confirmed by the PS‐weighted analysis and by all the sensitivity analyses. Interpretation This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID‐19 pandemic persists. ANN NEUROL 2021;89:780–789
This protocol is an extension to: Nat. Protoc. 5, 503-515 (2010); doi: 10.1038/nprot.2009.235; published online 25 February 2010The FLOTAC is a sensitive, accurate, and precise technique for the diagnosis of protozoan and helminth infections in humans and animals. However, it requires centrifugation, and hence might be out of reach in resource-constrained settings. As an extension of the original FLOTAC protocol, this protocol describes the Mini-FLOTAC technique, a logical evolution of FLOTAC conceived to perform multivalent, qualitative, and quantitative diagnosis of helminth and protozoan infections in human and animal feces, and urine. This has been found to be of most use in the processing of large numbers of samples with rapid laboratory workup, and for veterinary applications directly on-farm. In addition to the Mini-FLOTAC apparatus, we describe the use of the Fill-FLOTAC, a closed system used to facilitate the performance of the first four consecutive steps of the Mini-FLOTAC technique: fecal sample collection and weighing, homogenization, filtration, and filling of the Mini-FLOTAC chambers. Processing of an individual sample using this protocol requires ∼12 min.
Helminth infections are ubiquitous in grazing ruminant production systems, and are responsible for significant costs and production losses. Anthelmintic Resistance (AR) in parasites is now widespread throughout Europe, although there are still gaps in our knowledge in some regions and countries. AR is a major threat to the sustainability of modern ruminant livestock production, resulting in reduced productivity, compromised animal health and welfare, and increased greenhouse gas emissions through increased parasitism and farm inputs. A better understanding of the extent of AR in Europe is needed to develop and advocate more sustainable parasite control approaches. A database of European published and unpublished AR research on gastrointestinal nematodes (GIN) and liver fluke (Fasciola hepatica) was collated by members of the European COST Action “COMBAR” (Combatting Anthelmintic Resistance in Ruminants), and combined with data from a previous systematic review of AR in GIN. A total of 197 publications on AR in GIN were available for analysis, representing 535 studies in 22 countries and spanning the period 1980–2020. Reports of AR were present throughout the European continent and some reports indicated high within-country prevalence. Heuristic sample size-weighted estimates of European AR prevalence over the whole study period, stratified by anthelmintic class, varied between 0 and 48%. Estimated regional (country) prevalence was highly heterogeneous, ranging between 0% and 100% depending on livestock sector and anthelmintic class, and generally increased with increasing research effort in a country. In the few countries with adequate longitudinal data, there was a tendency towards increasing AR over time for all anthelmintic classes in GIN: aggregated results in sheep and goats since 2010 reveal an average prevalence of resistance to benzimidazoles (BZ) of 86%, macrocyclic lactones except moxidectin (ML) 52%, levamisole (LEV) 48%, and moxidectin (MOX) 21%. All major GIN genera survived treatment in various studies. In cattle, prevalence of AR varied between anthelmintic classes from 0–100% (BZ and ML), 0–17% (LEV) and 0–73% (MOX), and both Cooperia and Ostertagia survived treatment. Suspected AR in F. hepatica was reported in 21 studies spanning 6 countries. For GIN and particularly F. hepatica, there was a bias towards preferential sampling of individual farms with suspected AR, and research effort was biased towards Western Europe and particularly the United Kingdom. Ongoing capture of future results in the live database, efforts to avoid bias in farm recruitment, more accurate tests for AR, and stronger appreciation of the importance of AR among the agricultural industry and policy makers, will support more sophisticated analyses of factors contributing to AR and effective strategies to slow its spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.