Alternative fuels for internal combustion engines (ICE) emerge as a promising solution for a more sustainable operation. This work assesses combustion and performance of the dual-fuel operation in the spark ignition (SI) engine that simultaneously integrates acetone–butanol–ethanol (ABE) and hydroxy (HHO) doping. The study evaluates four fuel blends that combine ABE 5, ABE 10, and an HHO volumetric flow rate of 0.4 LPM. The standalone gasoline operation served as the baseline for comparison. We constructed an experimental test bench to assess operation conditions, fuel mode, and emissions characteristics of a 3.5 kW-YAMAHA engine coupled to an alkaline electrolyzer. The study proposes thermodynamic and combustion models to evaluate the performance of the dual-fuel operation based on in-cylinder pressure, heat release rate, combustion temperature, fuel properties, energy distribution, and emissions levels. Results indicate that ABE in the fuel blends reduces in-cylinder pressure by 10–15% compared to the baseline fuel. In contrast, HHO boosted in-cylinder pressure up to 20%. The heat release rate and combustion temperature follow the same trend, corroborating that oxygen enrichment enhances gasoline combustion. The standalone ABE operation raises fuel consumption by around 10–25 g∙kWh−1 compared to gasoline depending on the load, whereas HHO decreases fuel consumption by around 25%. The dual-fuel operation shows potential for mitigating CO, HC, and smoke emissions, although NOx emissions increased. The implementation of dual-fuel operation in SI engines represents a valuable tool for controlling emissions and reducing fuel consumption while maintaining combustion performance and thermal efficiency.
This work analyzes the use of palm kernel shells (PKS) produced by the Colombian palm oil mill industry, for purposes of fueling a commercial downdraft fixed bed gasifier (Ankur Scientific WGB- 20) designed to operate with wood chips. Operational parameters such as hopper shaking time, ash removal time, and airflow were varied in order to get the highest gasifier performance, computed as the ratio between producer gas chemical energy over biomass feeding energy. Experiments were carried out following a half fraction experimental design 24-1. Since these parameters affect the equivalence ratio (ER), behavior indicators were analyzed as a function of ER. It was found that the shaking time and airflow had a significant effect on higher-heating-value (HHV) and process efficiency, while the removal time is not significant. The highest performance for palm shell was reached at ER=0.35, where the resulting gas HHV and process efficiencies were 5.04 MJ/Nm3 and 58%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.