While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-alpha-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-alpha, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA-TGR5-cAMP-D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.
We concluded that levothyroxine should remain the standard of care for treating hypothyroidism. We found no consistently strong evidence for the superiority of alternative preparations (e.g., levothyroxine-liothyronine combination therapy, or thyroid extract therapy, or others) over monotherapy with levothyroxine, in improving health outcomes. Some examples of future research needs include the development of superior biomarkers of euthyroidism to supplement thyrotropin measurements, mechanistic research on serum triiodothyronine levels (including effects of age and disease status, relationship with tissue concentrations, as well as potential therapeutic targeting), and long-term outcome clinical trials testing combination therapy or thyroid extracts (including subgroup effects). Additional research is also needed to develop thyroid hormone analogs with a favorable benefit to risk profile.
Hypothyroidism is a common condition of thyroid hormone deficiency, which is readily diagnosed and managed but potentially fatal in severe cases if untreated. The definition of hypothyroidism is based on statistical reference ranges of the relevant biochemical parameters and is increasingly a matter of debate. Clinical manifestations of hypothyroidism range from life threatening to no signs or symptoms. The most common symptoms in adults are fatigue, lethargy, cold intolerance, weight gain, constipation, change in voice, and dry skin, but clinical presentation can differ with age and sex, among other factors. The standard treatment is thyroid hormone replacement therapy with levothyroxine. However, a substantial proportion of patients who reach biochemical treatment targets have persistent complaints. In this Seminar, we discuss the epidemiology, causes, and symptoms of hypothyroidism; summarise evidence on diagnosis, long-term risk, treatment, and management; and highlight future directions for research.
The goal of this review is to place the exciting advances that have occurred in our understanding of the molecular biology of the types 1, 2, and 3 (D1, D2, and D3, respectively) iodothyronine deiodinases into a biochemical and physiological context. We review new data regarding the mechanism of selenoprotein synthesis, the molecular and cellular biological properties of the individual deiodinases, including gene structure, mRNA and protein characteristics, tissue distribution, subcellular localization and topology, enzymatic properties, structure-activity relationships, and regulation of synthesis, inactivation, and degradation. These provide the background for a discussion of their role in thyroid physiology in humans and other vertebrates, including evidence that D2 plays a significant role in human plasma T(3) production. We discuss the pathological role of D3 overexpression causing "consumptive hypothyroidism" as well as our current understanding of the pathophysiology of iodothyronine deiodination during illness and amiodarone therapy. Finally, we review the new insights from analysis of mice with targeted disruption of the Dio2 gene and overexpression of D2 in the myocardium.
Excessive caloric intake is thought to be sensed by the brain, which then activates thermogenesis as a means of preventing obesity. The sympathetic nervous system, through beta-adrenergic receptor (betaAR) action on target tissues, is likely the efferent arm of this homeostatic mechanism. To test this hypothesis, we created mice that lack the three known betaARs (beta-less mice). beta-less mice on a Chow diet had a reduced metabolic rate and were slightly obese. On a high-fat diet, beta-less mice, in contrast to wild-type mice, developed massive obesity that was due entirely to a failure of diet-induced thermogenesis. These findings establish that betaARs are necessary for diet-induced thermogenesis and that this efferent pathway plays a critical role in the body's defense against diet-induced obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.