We investigate the motion of test particles in the gravitational field of a static naked singularity generated by a mass distribution with quadrupole moment. We use the quadrupole-metric ($q-$metric) which is the simplest generalization of the Schwarzschild metric with a quadrupole parameter. We study the influence of the quadrupole on the motion of massive test particles and photons and show that the behavior of the geodesics can drastically depend on the values of the quadrupole parameter. In particular, we prove explicitly that the perihelion distance depends on the value of the quadrupole. Moreover, we show that an accretion disk on the equatorial plane of the quadrupole source can be either continuous or discrete, depending on the value of the quadrupole. The inner radius of the disk can be used in certain cases to determine the value of the quadrupole parameter. The case of a discrete accretion is interpreted as due to the presence of repulsive gravity generated by the naked singularity. Radial geodesics are also investigated and compared with the Schwarzschild counterparts.Comment: Corrected typo
We present a relativistic model describing a thin disk surrounded by a halo in presence of an electromagnetic field. The model is obtained by solving the Einstein-Maxwell equations on a particular conformastatic spacetime background and by using the distributional approach for the energymomentum tensor. A class of solutions is obtained in which the gravitational and electromagnetic potentials are completely determined by a harmonic function only. A particular solution is given that is asymptotically flat and singularity-free, and satisfies all the energy conditions.
An infinite family of axisymmetric charged dust disks of finite extension is presented. The disks are obtained by solving the vacuum Einstein-Maxwell equations for conformastatic spacetimes, which are characterized by only one metric function. In order to obtain the solutions, it is assumed that the metric function and the electric potential are functionally related and that the metric function is functionally dependent of another auxiliary function, which is taken as a solution of Laplace equation. The solutions for the auxiliary function are then taken as given by the infinite family of generalized Kalnajs disks recently obtained by Gonz\'alez and Reina (MNRAS 371, 1873, 2006), which is expressed in terms of the oblate spheroidal coordinates and represents a well behaved family of finite axisymmetric flat galaxy models. The so obtained relativistic thin disks have then a charge density that is equal, except maybe by a sign, to their mass density, in such a way that the electric and gravitational forces are in exact balance. The energy density of the disks is everywhere positive and well behaved, vanishing at the edge. Accordingly, as the disks are made of dust, their energy-momentum tensor it agrees with all the energy conditions.Comment: Submitted to PR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.