Our resistance to infection is critically dependent upon the ability of pattern recognition receptors to recognise microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which play central roles in antifungal immunity1. These receptors activate key effector mechanisms upon recognition of conserved fungal cell wall carbohydrates. However, several other immunologically active fungal ligands have been described, including melanin2,3, whose mechanisms of recognition remain largely undefined. Here we identify a C-type lectin receptor, Melanin sensing C-type Lectin receptor (MelLec), that plays an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognises melanin in conidial spores of Aspergillus fumigatus, as well as other DHN-melanised fungi and is ubiquitously expressed by CD31+ endothelial cells in mice. MelLec is also expressed by a sub-population of these cells in mice that co-express EpCAM and which were detected only in the lung and liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. Thus MelLec is a receptor recognising an immunologically active component commonly found on fungi and plays an essential role in protective antifungal immunity in both mice and humans.
This retrospective study shows that final outcomes after myeloablative conditioning using IV Bu/Cy were not statistically different from those after Cy/TBI.
LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca signalling pathway that depends on intracellular Ca sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca-CaM signalling in aspergillosis. Finally, we demonstrate that Ca sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca-CaM signalling to inhibit LAP. These findings reveal the important role of Ca-CaM signalling in antifungal immunity and identify an immunological function of Ca binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.
In response to infection, macrophages adapt their metabolism rapidly to enhance glycolysis and fuel specialized antimicrobial effector functions. Here we show that fungal melanin is an essential molecule required for the metabolic rewiring of macrophages during infection with the fungal pathogen Aspergillus fumigatus. Using pharmacological and genetic tools, we reveal a molecular link between calcium sequestration by melanin inside the phagosome and induction of glycolysis required for efficient innate immune responses. By remodeling the intracellular calcium machinery and impairing signaling via calmodulin, melanin drives an immunometabolic signaling axis towards glycolysis with activation of hypoxia-inducible factor 1 subunit alpha (HIF-1α) and phagosomal recruitment of mammalian target of rapamycin (mTOR). These data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during fungal infection and highlight the metabolic repurposing of immune cells as a potential therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.